Report of Exploration Results from Las Bambas and Rosebery

The board of directors (Board) of MMG Limited (Company or MMG) is pleased to provide the exploration update of Las Bambas mine.

The report is annexed to this announcement.

By order of the Board

MMG Limited LI Liangang Interim CEO and Executive Director

Hong Kong, 13 July 2023

As at the date of this announcement, the Board comprises six directors, of which one is an executive director, namely Mr Li Liangang; two are non-executive directors, namely Mr Zhang Shuqiang and Mr Xu Jiqing; and three are independent nonexecutive directors, namely Dr Peter William Cassidy, Mr Leung Cheuk Yan and Mr Chan Ka Keung, Peter.

Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

INTRODUCTION

MMG operates the Las Bambas copper and molybdenum mine in Peru and the Rosebery Mine in Tasmania, Australia. Las Bambas is a joint venture project between the operator MMG (62.5%), a wholly owned subsidiary of Guoxin International Investment Co. Ltd (22.5%) and CITIC Metal Co. Ltd (15.0%). Rosebery is 100% owned and operated by MMG Limited.

MMG wishes to provide an update on progress with exploration activities on both Las Bambas and Rosebery. This report of exploration results is voluntary and is made in accordance with the JORC Code (2012). This complete report includes the "Table 1 Checklist of Assessment and Reporting Criteria" required by the JORC Code (2012).

The information provided relates to multiple time periods and is in support of ongoing projects and studies at each site.

FERROBAMBA DEEPS, LAS BAMBAS

Key Points

Deep drilling below the current Ferrobamba pit has been successful at defining the depth extension and continuity of skarn and porphyry mineralisation beneath the 2022 Ore Reserve pit design. It is now recognised that potential for large tonnage 0.4% to 0.6% Cu, 200 to 500 ppm Mo, 2g/t to 4g/t Ag and 0.04g/t to 0.08g/t Au grade deposit may exist at Ferrobamba Deeps. The positive drill results received in the 2022 program are supporting ongoing studies and further drilling is planned for 2023 and 2024 to evaluate the mineralisation and determine potential mining methods including expansion of the open pit and / or an underground development.

Mineralisation at Ferrobamba occurs in semicontinuous zones which are distributed around the central porphyry stocks. The Ferrobamba Deeps mineralisation, which has been intersected up to 700m below the Ore Reserve pit, has been divided into five zones (Figure 1). Selected intervals from each of the five zones are listed below and details of all intersections are contained within the following text and tables.

Western Zone

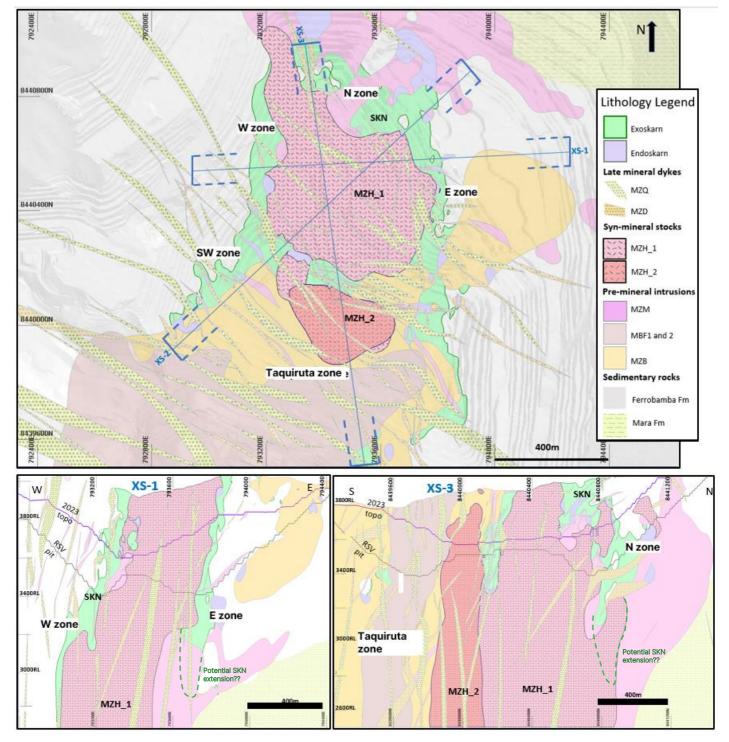
• FEEX22-006 248.6m @ 1.09% Cu and 451ppm Mo from 775.0m (inc. 8.35m @ 6.1% Cu and 900ppm Mo from 805.8m)

Eastern Zone

FEJ18-113
 109.2m @ 1.62% Cu and 205ppm Mo from 521.4m
 12.7m @ 0.52% Cu and 495ppm Mo from 676.3m
 39.6m @ 0.41% Cu and 598ppm Mo from 705.0m
 47.0m @ 0.79% Cu and 345ppm Mo from 780.7m
 24.6m @ 0.43% Cu and 66ppm Mo from 848.3m

Northern Zone

FE40675-14
 8.0m @ 1.34% Cu and 197ppm Mo from 588.1m
 10.8m @ 0.87% Cu and 1298ppm Mo from 633.7m
 35.3m @ 4.40% Cu and 290ppm Mo from 662.1m
 (incl. 3.5m @ 30.5% Cu and 139ppm Mo from 669.7m)


Southwest Zone

 FEJ18-120: 121.5m @ 1.46% Cu and 148ppm Mo from 391.9m (incl. 11.1m @ 6.1% Cu and 341ppm Mo from 494.6m) 25.4m @ 1.64% Cu and 754ppm Mo from 524.1m 17.6m @ 6.19% Cu and 52ppm Mo from 570.0m 25.1m @ 0.64% Cu and 477ppm Mo from 604.4m 34.2m @ 0.80% Cu and 1035ppm Mo from 655.0m 33.6m @ 0.69% Cu and 186ppm Mo from 705.8m 15.4m @ 0.71% Cu and 980ppm Mo from 758.6m 57.1m @ 0.51% Cu and 70ppm Mo from 823.2m

Taquiruta

• FEJ17-119

181.6m @ 0.84% Cu and 539ppm Mo from 410.2m 135.7m @ 0.75% Cu and 392ppm Mo from 642.9m

Figure 1. Plan view (top) and two sections (bottom) of Ferrobamba deposit showing the extension of the skarn (SKN) below the 2022 Ore Reserve pit. XS-2 is shown in Figure 5. The geology in the plan view is sliced through 3400m RL, at the level of the base of the 2022 Ore Reserve pit.

Geology Summary

Las Bambas is located in a belt of Cu (Mo-Au-Ag) skarn deposits associated with porphyry type systems situated in southeastern Peru. This metallogenic belt is controlled by the Andahuaylas-Yauri Batholith of Eocene- Oligocene age, which is emplaced in strongly folded and faulted Mesozoic sedimentary units, with the Ferrobamba Formation (Lower to Upper Cretaceous) being of greatest mineralising importance.

The Ferrobamba deposit consists of high-grade skarns (garnet-pyroxene dominant, with chalcopyrite, bornite, chalcocite and molybdenite) replacing limestones of the Ferrobamba Formation, and lower grade porphyry stockwork (quartz, chalcopyrite, bornite and molybdenite) mineralisation hosted by a series of intrusions that have pre-mineral, syn-mineral and late-mineral timing. Both porphyry and skarn mineralisation are broadly localised and zoned around two syn-mineral Hornblende Monzodiorite (MZH) stocks in the centre of the deposit (**Figure 1**). Gold and silver grades in both skarn and porphyry mineralisation have a direct correlation with Cu grades.

The southern portion of the deposit, known as the Taquiruta zone, is composed predominantly of the porphyry stockwork type of mineralisation within the large mass of pre-mineral intrusive stocks (**Figure 1**). In the other parts of the deposit (Eastern, Northern, Western and Southwestern zones), mineralisation is a combination of higher grade skarns, lower grade peripheral altered marble mineralisation outboard from the skarns, and porphyry stockwork and endoskarn mineralisation in the synmineral and pre-mineral intrusions. The skarn mineralisation is focussed in the limestones closest to the MZH stocks, and can also extend along the pre-mineral intrusive contacts. Skarn mineralisation is influenced at the local scale by the geometry of the pre-existing intrusions, late dykes, localised stockwork development, limestone stratigraphy, and structural controls. The south-east dipping Mara Formation lies 300-1400m below the surface in the deposit area, and limits the depth of skarn formation due to its siliciclastic nature. Understanding of the first and second order controls on mineralisation, especially the geometry of the pre-mineral intrusions, has been a crucial ingredient in projecting and modelling mineralisation at depth.

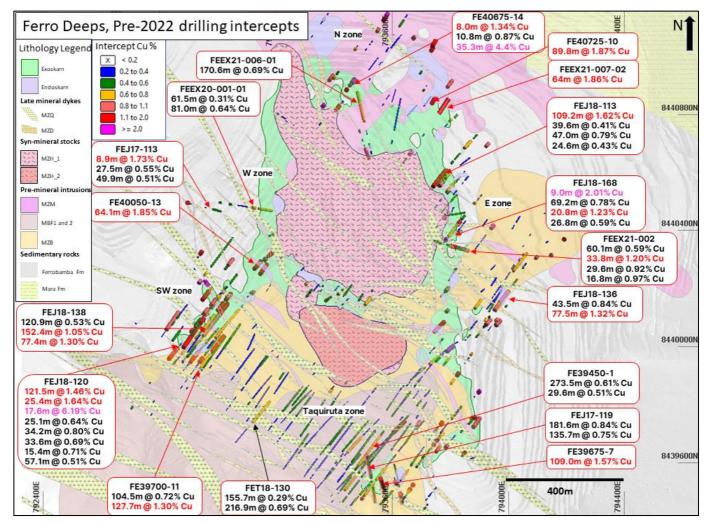
Exploration History

Since the early 2000's there have been multiple deep drilling campaigns at Ferrobamba. These have been both exploratory holes specifically targeting depth extensions and resource infill holes that were extended. Most of the drillholes historically have been drilled on sections striking 035°, oblique to the structural trend of late mineral dykes (**Figure 1**). As a result, some of the drillholes are oriented oblique to mineralisation, whereas in other parts they are subparallel to the trend of the ore zones.

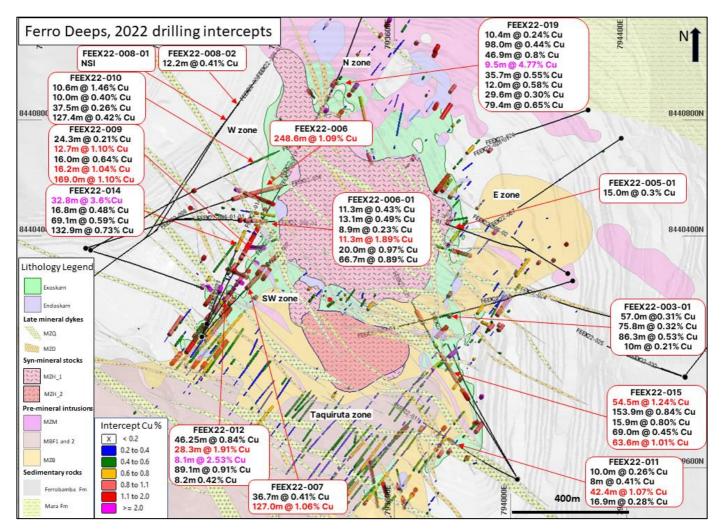
The Ferrobamba Deeps project originated in 2019 when a concerted effort was made to project, interpret, and model the mineralisation below the final pit design, which has a maximum depth of approximately 600m below surface. In 2020 a single drillhole (FEEX20-001-01, 864.8m) was completed which targeted the down dip extension of high-grade skarns along the steep W-dipping MZH contact within the final pit. This hole was significant in that it proved the continuity of skarns at depth in this zone, albeit at only low-moderate grade. Since then, the Ferrobamba Deeps project has progressively gained momentum, and drilling programs have increased (**Table 1**) as understanding and continuity of the modelled mineralisation in all areas of the deposit have improved. **Figure 2** shows all the Ferrobamba Deeps drill intercepts from before 2022, with the text boxes highlighting select intervals. The drilling results from 2022 were particularly positive and so are noted separately below and are shown in **Figure 3**.

Drilling inside the pit is difficult due to interaction with mining operations, so most drillholes in 2022 and 2023 are drilled from outside of the pit, using directional drilling to access areas where conventional holes are not possible. Directional drillholes are denoted by a -0X suffix, for example FEEX20-001 is the mother hole and FEEX20-001-01 is the first directional daughter hole.

Table 1 - Summary of Ferrobamba Deeps drilling programs since 2020.


A summary list of all the Ferrobamba drill programs from 2008 to 2022 is included in Section 2 of the Appendix 2.

Year	No. holes	Total metres	Comments
2020	1	864.8	FEEX20-001-01 targeting deep extension of W zone
2021	10	3,622.8	Conventional Holes drilled inside pit, targeting N and E zones
2022	27	16,841	Holes drilled outside pit. Mix of conventional and directional drilling.
			Multiple targets.
2023 budgeted	Approximately 50	35,000	Holes mostly outside the pit. Mix of conventional and directional drilling.
			Multiple targets, including porphyry stockwork mineralisation.


Western Zone

The Western Zone consists of the down-dip extension of known high-grade skarn mineralisation within the pit along the western contact of the MZH. This part of the deposit has no pre-mineral intrusions to interrupt the mineralisation but does have late-mineral dykes that dilute the skarn. Mo contents are generally low. There is 1000m of potential depth extension before the Mara Formation is encountered. Prior to 2022 there were very few drillholes in this part of the deposit due to the lack of possible platform locations on the Western pit wall (**Figure 2**). Best pre-2022 drill intercepts include:

- FEEX20-001-01: 9.0m @ 0.56% Cu and 93ppm Mo from 463m 9.8m @ 0.59% Cu and 117ppm Mo from 528.6m 61.5m @ 0.31% Cu and 286ppm Mo from 581.5m 15.2m @ 0.76% Cu and 340ppm Mo from 675.8m 81.0m @ 0.64% Cu and 165ppm Mo from 715.0m
- FE40050-13: 64.1m @ 1.85% Cu and 54ppm Mo from 550.6m
 12.0m @ 0.22% Cu and 128ppm Mo from 636.0m

Figure 2. Plan view showing Geology slice through 3400m RL. The coloured traces show all intercepts > 0.2% Cu and > 8m length below the planned Reserve Pit from all holes drilled before 2022. Select intervals are highlighted in the text boxes.

Figure 3. Plan view showing Geology slice through 3400m RL. The text boxes indicate all the 2022 drillhole intercepts > 0.2% Cu and > 8m length below the planned Reserve Pit. Some holes have not been completed.

The Western zone area was a focus for 2022 drilling, which was achieved by means of directional and conventional drillholes oriented at a shallow angle to the overall trend of mineralisation (Figure 3 and Figure 4). The 2022 program was successful at defining continuation of high-grade mineralisation up to several hundred metres below the final pit. Best 2022 drillhole intercepts include:

- FEEX22-006 248.6m @ 1.09% Cu and 451ppm Mo from 775.0m (inc. 8.35m @ 6.1% Cu and 900ppm Mo from 805.8m)
- FEEX22-007 36.7m @ 0.41% Cu and 97ppm Mo from 367.7m 127.0m @ 1.07% Cu and 140ppm Mo from 428.0m
- FEEX22-009 24.3m @ 0.21% Cu and 42ppm Mo from 336.2m 12.7m @ 1.1% Cu, and 56ppm Mo from 374.9m 16.0m @ 0.64% Cu and 161ppm Mo from, 425.0m 16.2m @ 1.04% Cu, and 39ppm Mo from 452.2m 169.0m @ 1.1% Cu, and 178ppm Mo from 478.0m (inc. 12m @ 4.74% Cu and 373ppm Mo from 512.0m)

Several holes were drilled targeting the northern end of the Western zone. The results of FEEX22-010 indicate that mineralisation does continue, however the grades are decreasing in this area.

- FEEX22-010 10.6m @ 1.46% Cu and 179ppm Mo from 571.3m 10.0m @ 0.40% Cu and 123ppm Mo from 798.0m 37.5m @ 0.26% Cu and 73ppm Mo from 827.4m 127.4m @ 0.42% Cu and 259ppm Mo from 873.6m
- FEEX22-008-01 No significant intersection (did not reach MZH target)

• FEEX22-008-02 12.2m @ 0.41% Cu and 55ppm Mo from 1422.0m (did not reach MZH target)

Northern Zone

This area has skarn mineralisation adjacent to the MZH stock and in between irregular shaped Mafic Monzonite (MZM) bodies that can host significant volumes of stockwork and endoskarn mineralisation (**Figure 2** and **Figure 5**). Skarn in the Northern zone is not continuously mineralised. There are second order geological and structural controls that result in variable Cu and Mo grades in the skarn. The skarn mineralisation is limited at depth by the Mara Formation contact at around 300-600m below the pit design. Best pre-2022 drillhole intercepts include.

- FE40675-14
 8.0m @ 1.34% Cu and 197ppm Mo from 588.1m
 10.8m @ 0.87% Cu and 1298ppm Mo from 633.7m
 35.3m @ 4.4% Cu and 290ppm Mo from 662.1m
 (incl. 3.5m @ 30.5% Cu and 139ppm Mo from 669.7m)
- FE40725-10 89.8m @ 1.87% Cu and 214ppm Mo from 549.8m
- FEEX21-005-01 95.7m @ 0.81% Cu and 102ppm Mo from 383.3m
 20.0m @ 0.23% Cu and 512ppm Mo from 494.0m
 22.0m @ 0.24% Cu and 68ppm Mo from 546.0m
 22.0m @ 0.49% Cu and 56ppm Mo from 631.0m
- FEEX21-006-01 14.0m @ 0.37% Cu and 69ppm Mo from 320.0m
 25.3m @ 0.45% Cu and 44ppm Mo from 357.0m
 22.0m @ 0.22% Cu and 114ppm Mo from 441.0m
 170.6m @ 0.69% Cu and 76ppm Mo from 521.0m
- FEEX21-007-02 64.0m @ 1.86% Cu and 823ppm Mo from 419.0m

Only one hole was drilled in 2022 in the Northern zone (**Figure 3**). FEEX22-019 intersected a zone of variably mineralised skarn much thicker than anticipated (**Figure 6**) that increases the potential of this area.

FEEX22-019
 10.4m @ 0.24% Cu and 149ppm Mo from 534.6m
 98.0m @ 0.44% Cu and 454ppm Mo from 593.0m
 46.9m @ 0.80% Cu and 394ppm Mo from 704.7m
 9.5m @ 4.77% Cu and 330ppm Mo from 805.5m
 35.7m @ 0.55% Cu and 159ppm Mo from 830.3m
 12.0m @ 0.58% Cu and 225ppm Mo from 882.0m
 29.6m @ 0.30% Cu and 144ppm Mo from 925.0m
 79.4m @ 0.65 Cu and 98ppm Mo from 1060.0m

Eastern Zone

The skarn mineralisation continues down the Eastern contact of the MZH which dips steeply to the W (Figure 2 and Figure 4). Several pre-mineral intrusions disrupt and dilute the mineralisation at depth but can also enhance skarn mineralisation at their contacts. Mo values in the Eastern zone tend to be low in the skarns, and are highest in zones of pre-mineral intrusion endoskarn. Best pre-2022 intercepts include:

•	FEJ18-113	109.2m @ 1.62% Cu and 205ppm Mo from 521.4m 12.7m @ 0.52% Cu and 495ppm Mo from 676.3m 39.6m @ 0.41% Cu and 598ppm Mo from 705.0m 47.0m @ 0.79% Cu and 345ppm Mo from 780.7m 24.6m @ 0.43% Cu and 66ppm Mo from 848.3m
•	FEJ18-136	43.5m @ 0.84% Cu and 301ppm Mo from 360.4m 77.5m @ 1.32% Cu and 555ppm Mo from 412.7m 13.2m @ 0.53% Cu and 46ppm Mo from 536.8m 15.4m @ 0.54% Cu and 168ppm Mo from 558.8m
•	FEJ18-168	9.0m @ 2.01% Cu and 649ppm Mo from 417.2m 69.2m @ 0.78% Cu and 126ppm Mo from 443.4m 20.8m @ 1.23% Cu and 146ppm Mo from 530.3m 26.8m @ 0.59% Cu and 157ppm Mo from 568.2m 8.7m @ 0.79% Cu and 419ppm Mo from 685.4m

22.1m @ 0.33% Cu and 222ppm Mo from 707.5m

10.3m @ 0.38% Cu and 124ppm Mo from 741.1m

- FEEX21-001 152m @ 0.69% Cu and 277ppm Mo from 449.0m 79m @ 0.35% Cu and 220ppm Mo from 711.0m
- FEEX21-002
 60.1m @ 0.59 % Cu and 22ppm Mo from 339.0m
 16.7m @ 0.45% Cu and 98ppm Mo from 423.4m
 33.8m @ 1.20 % Cu and 94ppm Mo from 451.2m
 29.65 @ 0.92% Cu and 60ppm Mo from 500.3m
 16.8m @ 0.97% Cu and 73ppm Mo from 545.2m

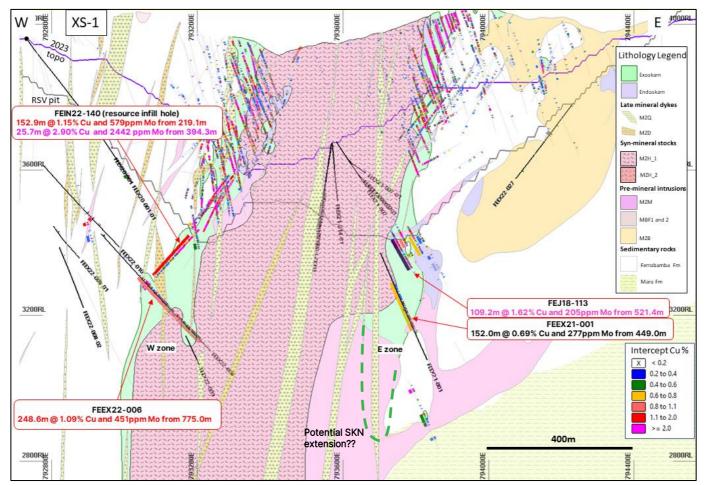
Five holes were drilled in the Eastern zone in 2022 (**Figure 3**). FEEX22-011 drilled almost entirely through a late mineral dyke, however where the hole left the dyke at 687.1m, 42.45m of >1% Cu was intersected. Best 2022 drilling intercepts include:

- FEEX22-003-01 57.0m @ 0.31% Cu and 181ppm Mo from 520.0m 75.8m @ 0.32% Cu and 100ppm Mo from 590.2m 86.3m @ 0.53% Cu and 54ppm Mo from 740.7m 10.0m @ 0.21% Cu and 30ppm Mo from 836.0m
- FEEX22-011 10.0m @ 0.26% Cu and 1057ppm Mo from 638.0m
 8.0m @ 0.32% Cu and 100ppm Mo from 664.0m
 42.45m @ 1.07% Cu and 719ppm Mo from 687.1m
 16.9m @ 0.28% Cu and 173ppm Mo from 868.0m
- FEEX22-015 54.5m @ 1.24% Cu and 1343ppm Mo from 457.0m (incl. 1.2m @ 25.46% Cu and 824ppm Mo from 506.7m) 153.9m @ 0.84% Cu and 611ppm Mo from 555.5m (incl. 1.2m @ 37.7% Cu and 353ppm Mo from 634.6m) 15.9m @ 0.80% Cu and 43ppm Mo from 742.0m 69.0m @ 0.45% Cu and 61ppm Mo from 767.0m 63.6m @ 1.01% Cu and 51ppm Mo from 869.0m

Taquiruta Zone

The Taquiruta zone is in the south of the deposit and consists predominantly of continuous quartz-sulphide stockwork mineralisation hosted in the pre-mineral intrusions (**Figure 2** and **Figure 6**). Grades are enhanced by the presence of limestone blocks up to 100m wide which are altered to mineralised skarn. Deep holes (up to 1500m) indicate continuity of the mineralisation > 1000m below surface. Mo grades in general increase with depth and are also higher closer to the intrusive contacts with limestone. Holes are planned to followup in 2023 and 2024. Best intercepts include:

- FEJ17-119 181.6m @ 0.84% Cu and 539ppm Mo from 410.2m 135.7m @ 0.75% Cu and 392ppm Mo from 642.9m
- FE39450-1 21.7m @ 0.51% Cu and 117ppm Mo from 377.7m 273.5m @ 0.61% Cu and 445ppm Mo from 415.5m 29.6m @ 0.51% Cu and 178ppm Mo from 701.0m
- FE39675-7 109.0m @ 1.57% Cu and 200ppm Mo from 348.0m
- FET18-130 155.7m @ 0.29% Cu and 261ppm Mo from 799.4m 216.9m @ 0.69% Cu and 507ppm Mo from 1031.0m


Southwest Zone

The Southwest zone includes mineralised skarn at the intersection of the MZH and the pre-mineral intrusions, and endoskarn and stockwork mineralisation in the intrusions which continue into the Taquiruta zone to the east (**Figure 2** and **Figure 5**). At depth mineralisation appears to diminish based on several deep drillholes returning lower grades. Southwest zone drillholes are subparallel to the general trend of mineralisation, resulting in long intercepts. Mo grades tend to be high, especially in and around the endoskarn. Holes drilled in 2022 were successful in defining mineralisation in the link between the Southwest zone and the Western zone (**Figure 3** and **Figure 5**). These are detailed above in the Western zone section. Further drilling is planned in 2023 and 2024. Best Southwest zone intercepts include:

 FEJ18-120: 121.5m @ 1.46% Cu and 148ppm Mo from 391.9m (incl. 11.1m @ 6.1% Cu and 341ppm Mo from 494.6m) 25.4m @ 1.64% Cu and 754ppm Mo from 524.1m 17.6m @ 6.19% Cu and 52ppm Mo from 570.0m 25.1m @ 0.64% Cu and 477ppm Mo from 604.4m 34.2m @ 0.80% Cu and 1035ppm Mo from 655.0m 33.6m @ 0.69% Cu and 186ppm Mo from 705.8m 15.4m @ 0.71% Cu and 980ppm Mo from 758.6m 57.1m @ 0.51% Cu and 70ppm Mo from 823.2m

- FEJ18-138: 15.4m @ 0.26% Cu and 4ppm Mo from 30.9m
 10.8m @ 0.22% Cu and 52ppm Mo from 347.2m
 120.9m @ 0.53% Cu, and 393ppm Mo from 393.8m
 152.4m @ 1.05% Cu and 748ppm Mo from 554.6m
 77.4m @ 1.30% Cu and 261ppm Mo from 715.9m
- FE39700-11: 12.0m @ 0.27% Cu and 20ppm Mo from 352.0m
 19.0m @ 0.34% Cu and 51ppm Mo from 440.0m
 26.0m @ 0.36% Cu and 84ppm Mo from 473.0m
 104.5m @ 0.72% Cu and 195ppm Mo from 525.3m
 127.7m @ 1.30% Cu and 669ppm Mo from 658.3m

The following 3 figures display cross sections (XS) through the Ferrobamba deposit highlighting significant intersections below the Reserve Pit.

Figure 4. XS-1 (see **Figure 1** for location), showing the extension of skarn mineralisation down the MZH contacts in the Eastern and Western zones, and select intercepts. ±50m window.

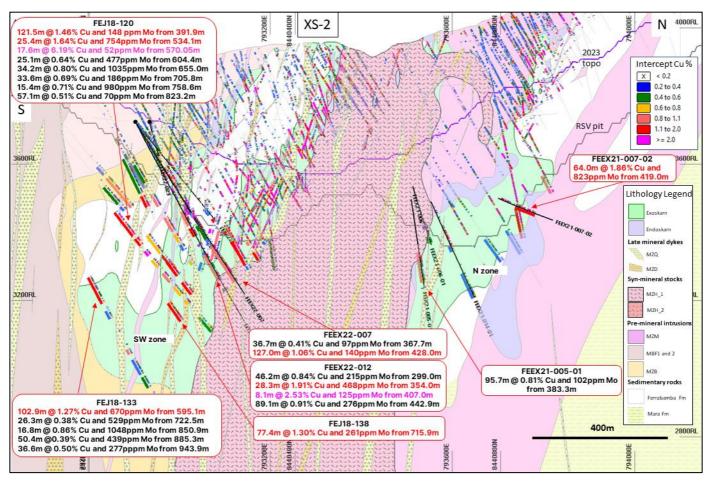


Figure 5. XS-2 (see Figure 1 for location), showing the SW and N zone targets, and select intercepts. ±50m window.

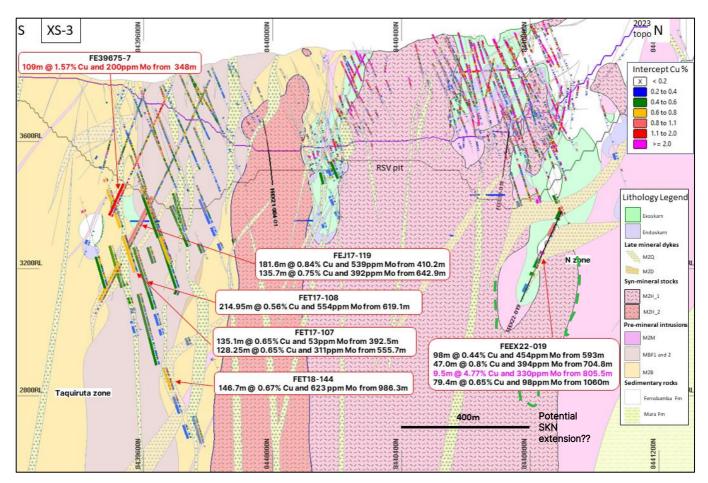


Figure 6. XS-3 (see Figure 1 for location), showing the Taquiruta and N zone targets and select intercepts. ±50m window.

Forward Program

Drilling programs in 2023 are underway and planned for 2024 to infill and identify areas with proximal extensions to known mineralisation, and to target new areas that have not been drilled. Previous drilling programs were focussed on targeting high grade skarn mineralisation. It has now been recognised that there is economic potential for large tonnage, low-medium grade targets encompassing the lower grade halos surrounding the skarns and the extensive zones of intrusive-hosted stockwork mineralisation such as the Taquiruta zone in the south of the Ferrobamba deposit (**Figures 3** and **Figure 6**). Studies have commenced to evaluate the mineralisation and determine potential mining methods, including the potential for expansion of the open pit and / or an underground development.

Statement of Compliance with JORC Code Reporting Criteria and Consent to Release

This report has been compiled in accordance with the guidelines defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("2012 JORC Code").

Competent Person Statement

I, Rex Berthelsen, confirm that I am the Competent Person for the Exploration Results section of this Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Fellow of The Australasian Institute of Mining and Metallurgy
- I have reviewed the relevant sections of this Report to which this Consent Statement applies.

I am a full-time employee of MMG Ltd. at the time of the report of exploration results.

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Exploration Results sections of this Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to the Exploration Results.

Competent Person Consent

Pursuant to the requirements Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

With respect to the sections of this report for which I am responsible – I consent to the release of the Exploration results as presented in this report:

This signature was scanned for the exclusive use in this document – the *MMG Las Bambas Exploration update as at 30 June 2023* – with the author's approval. Any other use is not authorised.

Rex Berthelsen HonFAusIMM(CPGeo)(#109561)

13/07/2023

Date:

Signature of Witness:

This signature was scanned for the exclusive use in this document – the *MMG Las Bambas Exploration update as at 30 June 2023* – with the author's approval. Any other use is not authorised. Witness Name and Residence: (e.g. town/suburb)

Jarod Esam, Melbourne, Australia

Appendix 1 - Drillhole Tables

Table 2 - Summary of Significant Downhole Intercepts

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
FE39350-1	361.25	371.25	10	0.24	0.01	91	0.7	Taquiruta
	397.85	407.95	10.1	0.31	0.01	12	1.5	Taquiruta
FE39400-2	454.7	577.7	123	0.54	0.01	337	1.2	Taquiruta
	636	644	8	1.42	0.05	296	7.3	Eastern Zone
	671.05	679.7	8.65	4.47	0.14	138	17.4	Eastern Zone
	699.4	738	38.6	0.79	0.10	795	8.7	Eastern Zone
FE39400-3	401	495.85	94.85	0.33	0.00	87	0.8	Taquiruta
	508.9	727.5	218.6	0.49	0.03	563	1.6	Taquiruta
	738.7	889.9	151.2	0.92	0.08	160	4.3	Taquiruta
FE39425-1	334.2	348	13.8	0.21	0.00	333	0.5	Taquiruta
FE39425-2	400	409.2	9.2	1.02	0.02	472	2.7	Taquiruta
	424.3	538.5	114.2	0.83	0.02	236	2.8	Taquiruta
	607	628	21	0.97	0.04	548	4.2	Eastern Zone
FE39425-4	399.45	415	15.55	0.35	0.01	52	1.1	Taquiruta
	485.5	510	24.5	0.23	0.01	54	0.7	Taquiruta
	520	553.6	33.6	0.23	0.00	168	0.6	Taquiruta
	574.2	820.15	245.95	0.40	0.02	349	1.2	Taquiruta
FE39450-1	377.75	399.5	21.75	0.51	0.01	117	0.8	Taquiruta
	415.5	689	273.5	0.61	0.02	445	1.6	Taquiruta
	701	730.6	29.6	0.51	0.04	178	1.9	Taquiruta
FE39450-2	382	455.8	73.8	0.33	0.01	119	0.8	Taquiruta
	496.9	713.5	216.6	0.41	0.03	487	1.7	Taquiruta
	723.5	744	20.5	0.47	0.05	51	2.5	Taquiruta
FE39475-1	415.45	665.45	250	0.43	0.03	327	1.3	Taquiruta
FE39475-2	497	609	112	0.44	0.01	442	1.1	Taquiruta
	619.5	636	16.5	0.23	0.01	281	0.7	Taquiruta
	660.5	695.2	34.7	0.83	0.02	421	1.6	Taquiruta
FE39475-3	404.6	501	96.4	0.46	0.01	248	1.4	Taquiruta
FE39475-4	295	315	20	0.22	0.01	140	0.8	Taquiruta
	505.5	533	27.5	0.25	0.01	108	0.8	Taquiruta
	543	606.3	63.3	0.33	0.01	194	1.1	Taquiruta
	629.8	666	36.2	0.36	0.02	478	1.0	Taquiruta
FE39475-5	390	813	423	0.63	0.02	647	1.5	Taquiruta
FE39500-1	367	383.5	16.5	0.95	0.03	143	2.1	Eastern Zone
	439.5	474.25	34.75	0.30	0.00	134	0.7	Eastern Zone
FE39500-4	483.45	511.45	28	0.33	0.01	99	1.0	Taquiruta
	557.5	633	75.5	0.50	0.02	597	1.5	Taquiruta
	652.05	666	13.95	0.29	0.02	290	1.0	Taquiruta
	701	806.5	105.5	0.37	0.03	169	1.4	Taquiruta
	825.85	834	8.15	0.59	0.04	146	2.1	Taquiruta
	843.6	854	10.4	0.53	0.03	45	1.7	Taquiruta
FE39525-1	399	564	165	0.38	0.01	214	1.0	Eastern Zone
	606.65	663.35	56.7	0.34	0.02	101	0.9	Eastern Zone
	792	840	48	0.81	0.03	636	2.6	Eastern Zone
	871.7	956.1	84.4	0.92	0.05	398	4.7	Eastern Zone
FE39525-2	377.4	623.15	245.75	0.44	0.02	398	1.3	Taquiruta
	748.5	756.95	8.45	0.24	0.03	47	0.9	Taquiruta
FE39550-13	263	271	8	0.34	0.01	61	1.3	Taquiruta
FE39550-3	498.8	519.3	20.5	0.36	0.02	101	1.2	Eastern Zone
-	575.8	609.95	34.15	0.42	0.02	218	1.3	Eastern Zone
	619.65	628.5	8.85	0.29	0.01	123	0.8	Eastern Zone
FE39550-7	533.15	638.3	105.15	0.42	0.04	73	1.9	Taquiruta
	649.9	670.25	20.35	0.37	0.05	77	0.9	Taquiruta
	680.4	745.5	65.1	0.52	0.04	104	2.7	Eastern Zone
	793.5	815.8	22.3	0.40	0.04	81	1.4	Eastern Zone
	839.2	857.95	18.75	0.55	0.09	88	2.5	Eastern Zone
	867.7	887.7	20	0.33	0.03	50	1.1	Eastern Zone
	911.2	1006	94.8	0.24	0.02	66	0.9	Eastern Zone
FE39575-1	401.15	411.15	10	0.23	0.02	95	0.3	Eastern Zone
1 20007 0-1	437.15	511.75	74.6	0.23	0.01	161	1.9	Eastern Zone
	502	510	8	0.30	0.02	161	1.3	Taquiruta

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
	518.65	535.6	16.95	0.35	0.02	214	1.3	Taquiruta
FE39575-17	347.2	425.05	77.85	1.02	0.07	161	6.3	Eastern Zone
FE39575-3	387.1	419.45	32.35	0.54	0.02	60	2.1	Eastern Zone
	429.45	441.45	12	1.23	0.08	49	8.3	Eastern Zone
FE39575-4	265.35	289.4	24.05	0.31	0.01	64	0.9	Eastern Zone
FE39575-6	405.9	468.2	62.3	0.37	0.01	297	0.7	Eastern Zone
FE39575-7	270	292	22	0.24	0.00	24	0.7	Taquiruta
	335	357	22	0.38	0.00	157	0.8	Taquiruta
	366	400.9	34.9	0.36	0.00	238	0.7	Taquiruta
	449	509.05	60.05	0.43	0.02	376	1.3	Taquiruta
	519	623	104	0.34	0.03	125	1.3	Taquiruta
FE39575-8	353.4	412	58.6	0.29	0.01	404	0.8	Taquiruta
	450.65	582.4	131.75	0.28	0.02	88	1.1	Taquiruta
FF00000 4	606	614.9	8.9	0.22	0.01	141	0.6	Taquiruta
FE39600-1	358.9	389.45	30.55	0.25	0.01	97	0.4	Taquiruta
	474.85	490.55	15.7	0.35	0.01	207	0.6	Taquiruta
	502.25	652.8	150.55	0.34	0.02	329	0.9	Taquiruta
FE39600-2	300	336	36	0.46	0.01	230	0.9	Taquiruta
	371.6	527.95	156.35	0.43	0.03	282	1.8	Taquiruta
	557	569	12	0.22	0.02	26	0.9	Taquiruta
FF20600 2	620 520 5	635.8	15.8	0.36	0.03	38	2.1	Taquiruta
FE39600-3	530.5	627	96.5	0.36	0.02	218	1.3	Eastern Zone
	658.7	782.5	123.8	0.68	0.09	339	4.4	Eastern Zone
FE39625-3	261.35	314.85	53.5	0.21	0.00	114	-0.1	Taquiruta
	351.15 543.2	532.2 568.4	181.05 25.2	0.43	0.03	303 300	1.5 1.4	Taquiruta Taquiruta
FF200F0 10								
FE39650-10	344 430.4	411.7 480	67.7 49.6	0.47 0.26	0.03	280	1.8 1.0	Taquiruta
	430.4	480 502	49.6	0.28		40 47	0.8	Taquiruta
	562	502	12		0.01		2.2	Taquiruta
FF200F0 11				0.46		73		Taquiruta
FE39650-11	501 537	517 558.75	16 21.75	0.23	0.01	78 57	0.6	Taquiruta
	591.5	607.4	15.9	0.23	0.01	321	0.8	Taquiruta
	643.8	834	190.2	0.36	0.01	473	1.5	Taquiruta Taquiruta
FE39650-4	496.2	529.15	32.95	0.37	0.03	108	1.5	Eastern Zone
1239030-4	568.1	651.8	83.7	0.30	0.02	220	1.1	Eastern Zone
FE39650-7	500.2	531.75	31.55	0.32	0.02	119	1.0	Eastern Zone
123000-7	579.8	684	104.2	0.32	0.03	113	1.3	Eastern Zone
	714.75	781	66.25	0.42	0.06	132	3.1	Eastern Zone
	789.9	846	56.1	0.38	0.03	239	1.9	Eastern Zone
	855.1	879	23.9	0.30	0.03	117	1.3	Eastern Zone
	891	906.5	15.5	0.30	0.02	109	1.2	Eastern Zone
FE39650-8	492	561.3	69.3	0.25	0.03	49	0.7	Eastern Zone
FE39675-4	180.1	252.25	72.15	0.27	0.01	101	1.0	Taquiruta
. 2000/0 4	274	232.23	10	0.27	0.01	36	0.9	Taquiruta
	340	375.3	35.3	0.22	0.01	183	1.0	Taquiruta
	388.1	579	190.9	0.32	0.01	332	1.0	Taquiruta
FE39675-7	348	457	100:0	1.57	0.02	200	3.8	Taquiruta
FE39700-10	278	438	160	0.43	0.03	309	1.8	Taquiruta
	448	461	13	0.20	0.02	79	0.7	Taquiruta
FE39700-11	352	364	13	0.20	0.02	20	0.7	Southwest Zone
. 200,00 11	440	459	12	0.27	0.01	51	1.3	Southwest Zone
	473	499	26	0.34	0.01	84	1.3	Southwest Zone
	525.3	629.85	104.55	0.72	0.03	195	2.3	Southwest Zone
	658.3	786	127.7	1.30	0.09	669	6.7	Southwest Zone
FE39700-2	369	377	8	0.20	0.01	51	0.7	Taquiruta
	441	450	9	0.41	0.01	310	1.0	Taquiruta
	508	542	34	0.32	0.01	181	0.7	Taquiruta
	579.5	708	128.5	0.36	0.02	367	1.2	Taquiruta
	740.5	749.2	8.7	0.21	0.02	47	0.8	Taquiruta
FE39700-7	594.7	611.3	16.6	0.42	0.02	188	3.3	Eastern Zone
FE39700-8	576.6	595.4	18.8	0.42	0.04	412	1.5	Eastern Zone
. 200,00 0	604.4	638.3	33.9	0.42	0.04	338	3.6	Eastern Zone
FE39700-9	218	239	21	0.02	0.00	96	0.6	Taquiruta
. 200700 0	218	239	16	0.21	0.00	54	0.0	Taquiruta

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
	406	430	24	0.21	0.00	152	0.3	Taquiruta
	465.45	477	11.55	0.28	0.00	185	0.5	Taquiruta
	487	645	158	0.34	0.03	435	1.3	Taquiruta
FE39725-2	557.5	593.7	36.2	0.60	0.06	93	3.0	Eastern Zone
	612.15	621.65	9.5	0.21	0.02	147	1.2	Eastern Zone
	646.8	700.65	53.85	2.12	0.28	511	13.7	Eastern Zone
FE39725-3	266	276	10	0.29	0.01	361	0.5	Taquiruta
	284	425	141	0.35	0.03	255	1.4	Taquiruta
	434.8	447	12.2	0.24	0.02	131	1.0	Taquiruta
FE39725-5	342	366	24	0.25	0.02	55	0.8	Taquiruta
FE39750-10	571.8	628.5	56.7	0.29	0.03	28	1.3	Eastern Zone
	680.2	711.4	31.2	0.41	0.04	77	1.7	Eastern Zone
FE39750-11	185	209	24	0.42	0.01	129	1.2	Taquiruta
	262	572	310	0.33	0.02	265	1.3	Taquiruta
FE39750-2	428	440	12	0.23	0.01	250	1.5	Taquiruta
FE39750-8	566.6	609.95	43.35	0.36	0.04	154	1.8	Eastern Zone
FE39775-5	289.55	340.15	50.6	0.41	0.03	263	1.6	Taquiruta
FE39775-6	569.55	700.5	130.95	0.53	0.05	252	3.2	Eastern Zone
	713	790.65	77.65	1.72	0.12	272	8.9	Eastern Zone
FE39800-4	306.8	380.8	74	0.43	0.03	263	1.7	Taquiruta
	419.95	432.55	12.6	0.22	0.02	267	0.8	Taquiruta
FE39800-5	595.35	681.5	86.15	1.24	0.16	63	6.6	Eastern Zone
FE39800-7	264	280	16	0.21	0.00	30	1.0	Southwest Zone
	307	328	21	0.24	0.01	46	0.6	Southwest Zone
	356	374	18	0.26	0.00	33	0.5	Southwest Zone
	392	441	49	0.43	0.02	132	1.1	Southwest Zone
	450.5	467	16.5	1.30	0.06	209	3.7	Southwest Zone
	478.6	679.5	200.9	0.65	0.05	841	2.6	Southwest Zone
	744.55	753.1	8.55	0.21	0.02	143	0.8	Southwest Zone
FE39825-2	328.4	344.4	16	0.27	0.02	261	0.9	Taquiruta
FE39825-8	228	246	18	0.29	0.00	170	0.9	Southwest Zone
	306	375.9	69.9	0.37	0.01	286	0.7	Southwest Zone
	387	591.4	204.4	0.54	0.05	580	2.3	Southwest Zone
FE39850-5	309.45	429	119.55	0.38	0.03	260	1.4	Taquiruta
FE39850-6	481.1	514.3	33.2	1.06	0.09	284	6.4	Eastern Zone
FE39875-11	293	358.5	65.5	0.36	0.01	229	0.9	Southwest Zone
	385	651	266	0.64	0.06	770	3.0	Southwest Zone
	677	689	12	0.43	0.02	937	1.9	Southwest Zone
FE39875-12A	330	404.45	74.45	0.87	0.05	119	4.2	Southwest Zone
	431.45	441.4	9.95	0.85	0.05	14	1.6	Southwest Zone
FE39875-4	608.2	622.1	13.9	0.93	0.14	84	5.9	Eastern Zone
FE39900-2	538.35	605.8	67.45	0.72	0.06	174	3.8	Eastern Zone
FE39900-3	419.7	461	41.3	0.27	0.02	135	0.9	Taquiruta
FE39950-4	494.4	503.3	8.9	0.73	0.11	30	3.5	Taquiruta
	567.15	599	31.85	0.36	0.06	66	2.0	Taquiruta
FE39950-5	247.8	360.5	112.7	0.40	0.01	163	0.7	Southwest Zone
	370	405.8	35.8	1.63	0.15	546	11.2	Southwest Zone
FE39950-7	534.05	558.1	24.05	0.21	0.03	126	1.0	Western Zone
	574.55	587.25	12.7	0.27	0.03	61	1.0	Western Zone
FE39950-8	600.3	624	23.7	0.26	0.04	152	1.6	Eastern Zone
	633.1	647.95	14.85	0.24	0.03	666	1.5	Eastern Zone
	658.4	691.5	33.1	0.53	0.07	74	3.4	Eastern Zone
FE39950-9	599	615.3	16.3	0.42	0.05	46	2.5	Eastern Zone
	624.35	638.9	14.55	0.28	0.04	19	1.3	Eastern Zone
	649.85	680.85	31	0.94	0.13	13	5.2	Eastern Zone
FE39975-13	196	219.9	23.9	0.43	0.01	128	1.2	Southwest Zone
	250.85	269	18.15	0.56	0.00	436	1.0	Southwest Zone
	280.45	367	86.55	0.32	0.00	150	0.8	Southwest Zone
FE39975-14	275	335.7	60.7	0.48	0.01	330	0.9	Southwest Zone
	375.5	415.7	40.2	1.08	0.07	501	5.5	Southwest Zone
	453.1	501	47.9	0.92	0.08	804	6.4	Southwest Zone
	510	536.2	26.2	0.75	0.08	167	5.4	Southwest Zone
	545.45	565	19.55	0.39	0.05	56	3.4	Southwest Zone
	599	614	15	0.72	0.11	1051	6.6	Southwest Zone
FE39975-2 FE39975-4	621.15 530.55	632.8 555.65	11.65 25.1	0.25	0.03	31 195	0.9 1.4	Western Zone Eastern Zone

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
FE39975-5	424.75	435.65	10.9	0.54	0.04	242	4.2	Eastern Zone
FE40000-10	492.9	524.25	31.35	0.20	0.01	168	0.7	Southwest Zone
FE40000-11	510.45	525	14.55	0.22	0.03	277	1.9	Western Zone
	549	571.4	22.4	1.01	0.12	191	6.5	Western Zone
FE40000-4	423.45	453.25	29.8	0.55	0.08	35	2.7	Taquiruta
FE40000-5	467.65	524.05	56.4	0.38	0.02	253	1.2	Eastern Zone
FE40000-6	376.5	386.55	10.05	0.44	0.08	22	2.2	Taquiruta
FE40000-7	207.4	216.8	9.4	0.26	0.01	44	1.0	Southwest Zone
FE40000-8	459.55	471.7	12.15	0.69	0.05	54	1.7	Taguiruta
FE40000-9	551.4	560.6	9.2	0.24	0.01	63	0.6	Taquiruta
12100000	593.35	601.85	8.5	0.27	0.03	56	1.1	Taquiruta
FE40025-2	427.75	445.5	17.75	0.38	0.03	678	3.1	Southwest Zone
FE40025-7	540.3	620.55	80.25	1.20	0.03	55	5.9	Western Zone
	441			0.25	0.14	188		Eastern Zone
FE40025-8	441	452.6 523	11.6				0.7	
	-		26	0.64	0.05	159	3.8	Eastern Zone
== 40050 40	533.35	647.2	113.85	0.41	0.01	100	0.9	Eastern Zone
FE40050-12	409.85	466.7	56.85	0.35	0.03	47	1.0	Taquiruta
FE40050-13	550.6	614.7	64.1	1.85	0.22	54	9.1	Western Zone
	636	648	12	0.22	0.02	128	0.8	Western Zone
FE40050-15	364.35	435.4	71.05	0.51	0.07	54	2.3	Taquiruta
FE40050-4	207.5	215.5	8	0.29	0.01	339	2.0	Eastern Zone
FE40075-11	444	504.5	60.5	0.30	0.02	147	1.4	Eastern Zone
FE40075-6	391.65	510.85	119.2	0.65	0.04	201	4.0	Eastern Zone
FE40075-7	566.35	578.85	12.5	0.94	0.12	190	3.6	Western Zone
	602.55	631.05	28.5	1.15	0.16	43	4.9	Western Zone
FE40075-8	472.75	515.2	42.45	0.26	0.02	237	1.0	Eastern Zone
FE40100-10	370	388.15	18.15	0.41	0.02	220	2.9	Eastern Zone
FE40100-13	325	391	66	0.24	0.02	75	0.5	Southwest Zone
FE40125-13	485.35	514.4	29.05	0.33	0.03	35	1.3	Taquiruta
FE40150-11	433.33	471	33	0.33	0.03	1169	1.3	Eastern Zone
FE40150-16	328.15	341.1	12.95	0.42	0.01	134	1.1	Eastern Zone
	354.4	372.1	17.7	0.37	0.01	138	0.5	Eastern Zone
FE40150-25	313.75	326	12.25	0.30	0.00	101	1.1	Western Zone
FE40150-29	432.4	500.8	68.4	2.29	0.24	501	17.0	Southwest Zone
FE40150-9	337.4	352.4	15	0.82	0.04	339	1.0	Eastern Zone
FE40200-6	361.85	371.4	9.55	0.22	0.01	301	0.4	Eastern Zone
FE40200-8	565.15	573.15	8	0.30	0.03	36	0.8	Western Zone
FE40225-14	511.3	566.7	55.4	0.31	0.03	14	2.2	Eastern Zone
FE40225-16	397	424	27	0.27	0.00	105	0.7	Eastern Zone
	448	490	42	0.35	0.01	159	1.7	Eastern Zone
FE40250-3	331.5	345.75	14.25	0.37	0.01	21	1.3	Eastern Zone
FE40250-9	356	371.5	15.5	0.21	0.00	73	0.4	Eastern Zone
FE40300-9	383.75	423.2	39.45	0.27	0.01	130	1.1	Eastern Zone
FE40325-4	558.45	654	95.55	0.53	0.04	200	1.8	Western Zone
FE40375-10	584.65	601.65	17	0.41	0.04	19	1.3	Western Zone
FE40375-14		529		0.41		107		Eastern Zone
FE40375-14	514.5		14.5		0.00	107	0.7	
	543	564	21	0.41	0.01		1.5	Eastern Zone
FE40500-15	721.2	744.5	23.3	2.99	0.33	134	6.1	Northern Zone
FE40500-16	654	698	44	1.35	0.05	98	5.6	Northern Zone
	711.7	825	113.3	0.48	0.03	309	1.8	Northern Zone
FE40550-14	616.2	698	81.8	0.30	0.01	263	1.1	Northern Zone
FE40575-7	603.5	623.25	19.75	0.38	0.03	273	0.9	Northern Zone
FE40600-13	621.9	667.8	45.9	1.60	0.12	855	4.4	Northern Zone
	692.2	714.9	22.7	0.40	0.08	209	3.3	Northern Zone
FE40600-16	613	713	100	0.26	0.01	175	0.8	Northern Zone
FE40625-12	553	606	53	0.43	0.00	182	1.2	Northern Zone
	638.4	649.8	11.4	0.29	0.00	81	0.6	Northern Zone
FE40625-5	608.1	622.05	13.95	2.06	0.25	766	10.8	Northern Zone
FE40650-7	560	569.2	9.2	0.55	0.00	91	1.7	Northern Zone
. 270000 /	595	603	9.2	0.33	0.00	73	0.6	Northern Zone
EE10675 14			8		0.01	197		
FE40675-14	588.15	596.15		1.34			15.3	Northern Zone
	633.75	644.6	10.85	0.87	0.19	1298	5.6	Northern Zone
	662.15	697.5	35.35	4.40	0.39	290	35.1	Northern Zone
FE40675-4	580.9	590.7	9.8	0.74	0.04	566	3.8	Northern Zone
	614.8	633.9	19.1	0.48	0.03	204	1.6	Northern Zone
FE40675-5	544.6	556.15	11.55	0.28	0.01	172	0.5	Northern Zone

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
FE40700-12	487.45	545.1	57.65	0.88	0.09	537	5.1	Northern Zone
FE40725-10	549.85	639.7	89.85	1.87	0.08	214	2.1	Northern Zone
FE40725-19	523.6	578.25	54.65	0.89	0.06	466	3.5	Northern Zone
FE40750-1	505.15	584.6	79.45	0.28	0.01	207	0.7	Northern Zone
	594.6	604.05	9.45	0.25	0.01	184	0.4	Northern Zone
FE40750-9	500.3	522.55	22.25	0.22	0.01	83	0.5	Northern Zone
FE40800-12	476.15	504.75	28.6	0.36	0.02	171	0.5	Northern Zone
FE40825-8	453.85	463.6	9.75	0.70	0.02	68	1.3	Northern Zone
1240025-0	475.2	403.0	13.9	0.24	0.02	232	1.3	Northern Zone
FF40950 10								
FE40850-10	432.05	453.1	21.05	1.23	0.04	203	3.1	Northern Zone
FE40850-14	462.7	480.35	17.65	0.24	0.05	124	0.9	Northern Zone
	512.85	522.15	9.3	0.32	0.04	188	0.7	Northern Zone
	535.65	545.95	10.3	0.32	0.04	151	0.8	Northern Zone
FE40850-17	441.5	477	35.5	0.47	0.01	131	1.0	Northern Zone
FE40850-9	451	547.6	96.6	0.38	0.02	91	1.0	Northern Zone
	559.6	573.6	14	0.25	0.01	13	0.7	Northern Zone
FE40875-12	407.3	450.1	42.8	1.54	0.07	68	5.4	Northern Zone
FE40875-8	419.25	428.85	9.6	1.05	0.02	883	1.6	Northern Zone
FE40900-1	414.2	438.45	24.25	0.80	0.02	119	1.9	Northern Zone
	504.45	520.25	15.8	1.48	0.06	14	7.0	Northern Zone
	542.25	559.65	17.4	2.98	0.06	16	6.3	Northern Zone
FE40925-5	378	390	12	0.37	0.01	21	1.5	Northern Zone
1240020 0	426.5	542.2	115.7	0.61	0.02	103	2.0	Northern Zone
	563	579.1	16.1	1.01	0.02	7	3.8	Northern Zone
FE41100-5	474	504	30	0.48	0.03	63	3.0	Northern Zone
FE41125-3	324.55	387.15	62.6	0.23	0.03	22	1.6	Northern Zone
FE41175-4	269.75	282.4	12.65	0.21	0.00	71	0.6	Northern Zone
FE41225-3	299.65	308.05	8.4	0.20	0.02	34	2.0	Northern Zone
	310.05	325.15	15.1	0.38	0.06	43	3.3	Northern Zone
	468	483.55	15.55	0.25	0.05	2	1.4	Northern Zone
FE41250-2	260.3	268.3	8	0.35	0.02	66	2.4	Northern Zone
	346.7	365	18.3	0.75	0.06	17	4.9	Northern Zone
	461	471.6	10.6	0.26	0.05	5	1.4	Northern Zone
	513.05	552.3	39.25	0.28	0.03	3	1.3	Northern Zone
FE41275-7	221.55	258.3	36.75	0.20	0.03	6	1.2	Northern Zone
	348	372.1	24.1	0.31	0.06	3	2.1	Northern Zone
	386	423.1	37.1	0.38	0.12	1	3.7	Northern Zone
	436	456.45	20.45	0.32	0.06	2	2.4	Northern Zone
	471.3	487.85	16.55	0.22	0.03	2	1.1	Northern Zone
FE41325-6	191.5	201.6	10.1	0.38	0.02	16	2.1	Northern Zone
1241020 0	336.9	399.45	62.55	0.24	0.02	4	1.5	Northern Zone
	416.6	427.3	10.7	0.63	0.13	3	4.7	Northern Zone
FE41350-5	354.2	388	33.8	0.03	0.13	1	4.7	Northern Zone
FE41350-5								
5544050.0	402.25	418.4	16.15	0.47	0.14	3	2.9	Northern Zone
FE41350-6	163	194.45	31.45	0.41	0.12	17	2.8	Northern Zone
	314.3	371.1	56.8	0.24	0.02	4	1.3	Northern Zone
FE41400-1	254.4	267.35	12.95	0.24	0.07	4	1.9	Northern Zone
	281.35	299.7	18.35	0.38	0.10	2	2.2	Northern Zone
	364.35	374.35	10	0.24	0.05	4	1.3	Northern Zone
FE41450-2	157.4	165.4	8	0.27	0.01	12	1.6	Northern Zone
FE41450-4	202	220	18	0.28	0.07	6	1.3	Northern Zone
	252.5	264	11.5	0.26	0.04	6	2.1	Northern Zone
	276	293.4	17.4	0.39	0.05	7	3.3	Northern Zone
	310.35	326.6	16.25	0.22	0.05	7	1.4	Northern Zone
FEC18-125	147.3	162.6	15.3	0.24	0.03	21	2.2	Northern Zone
010 120	193.3	203.3	10	0.67	0.03	119	3.6	Northern Zone
	253.3	203.3	16.7	0.32	0.02	3	3.0	Northern Zone
		318.9	40.1		0.09	6		Northern Zone
FF010 107	278.8			0.20			1.0	
FEC18-137	410.6	432.4	21.8	0.22	0.01	27	1.0	Northern Zone
	556.4	580.2	23.8	0.27	0.02	217	0.9	Northern Zone
	595.6	613.7	18.1	0.80	0.02	329	2.8	Northern Zone
	656.5	665.5	9	0.39	0.01	844	1.2	Northern Zone
	695.9	745.4	49.5	0.42	0.01	61	1.5	Northern Zone
FEC18-141	317.3	373.7	56.4	0.52	0.01	30	1.9	Northern Zone
	398.2	421.8	23.6	0.28	0.01	86	1.2	Northern Zone

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
	396.8	405.6	8.8	0.24	0.03	5	1.6	Northern Zone
	418.8	427.4	8.6	0.44	0.13	5	3.3	Northern Zone
	473.4	489.3	15.9	0.21	0.03	4	1.2	Northern Zone
FEC18-158	314.4	340.4	26	0.27	0.01	24	1.3	Northern Zone
FEJ17-101	534.3	561.65	27.35	1.09	0.16	52	6.7	Eastern Zone
	584.9	597.75	12.85	0.67	0.10	31	4.4	Eastern Zone
FEJ17-105	519.75	546	26.25	0.34	0.04	54	2.1	Eastern Zone
	591.15	603.35	12.2	0.22	0.02	85	1.7	Eastern Zone
	617.7	644.1	26.4	0.39	0.04	396	2.0	Eastern Zone
FEJ17-110	862.3	877.85	15.55	0.39	0.05	24	2.0	Eastern Zone
	909.4	924.6	15.2	0.31	0.03	156	1.9	Eastern Zone
	978.35	990.2	11.85	2.06	0.41	436	26.1	Eastern Zone
	1061.1	1100.9	39.8	0.45	0.06	294	1.3	Eastern Zone
	1138	1147.2	9.2	0.24	0.01	113	0.4	Eastern Zone
FEJ17-112	519.8	587.4	67.6	0.62	0.08	72	3.2	Eastern Zone
	833.85	855.35	21.5	0.87	0.02	197	2.9	Eastern Zone
FEJ17-113	523.4	532.3	8.9	1.73	0.16	301	18.7	Western Zone
	560.2	577.5	17.3	0.21	0.01	61	1.4	Western Zone
	769.3	781.2	11.9	0.23	0.01	150	1.6	Western Zone
	872.8	900.3	27.5	0.55	0.03	884	2.9	Western Zone
	920.4	970.3	49.9	0.51	0.06	204	3.7	Western Zone
FEJ17-115	397.35	570.3	172.95	0.44	0.01	100	0.8	Taquiruta
	618.2	651.2	33	1.44	0.03	1424	5.1	Taquiruta
	660	694.95	34.95	0.96	0.02	70	2.6	Taquiruta
FEJ17-119	410.2	591.8	181.6	0.84	0.03	539	1.8	Taquiruta
	642.9	778.6	135.7	0.75	0.02	392	2.4	Taquiruta
FEJ17-121	499.8	518.95	19.15	0.35	0.05	97	2.8	Eastern Zone
	527	570	43	0.29	0.03	89	2.1	Eastern Zone
FEJ17-124	630.8	663.4	32.6	0.40	0.05	45	2.5	Eastern Zone
	674.4	748.1	73.7	0.42	0.05	148	2.4	Eastern Zone
FEJ18-101	350.5	398.65	48.15	0.75	0.12	99	4.4	Taquiruta
FEJ18-102	436.2	445	8.8	0.38	0.05	86	1.6	Taquiruta
	474.85	492.1	17.25	0.31	0.03	23	1.2	Taquiruta
FEJ18-108	268.25	331.4	63.15	0.42	0.07	27	2.5	Taquiruta
FEJ18-109	520.1	565.5	45.4	0.50	0.01	124	1.3	Southwest Zone
	578.4	615.6	37.2	0.33	0.01	143	1.1	Southwest Zone
	657.8	814.9	157.1	0.65	0.04	698	2.5	Southwest Zone
	860.45	987	126.55	0.50	0.05	741	2.7	Southwest Zone
FEJ18-113	521.45	630.65	109.2	1.62	0.20	205	10.5	Eastern Zone
	676.35	689.1	12.75	0.52	0.02	495	2.5	Eastern Zone
	705	744.6	39.6	0.41	0.01	598	1.3	Eastern Zone
	780.7	827.7	47	0.79	0.02	345	2.0	Eastern Zone
	848.3	872.9	24.6	0.43	0.01	66	1.3	Eastern Zone
FEJ18-114	305.4	323.2	17.8	0.59	0.06	49	2.5	Taquiruta
FF 110 110	335.95	357.95	22	0.58	0.07	29	2.8	Taquiruta
FEJ18-116	746	755.5	9.5	0.28	0.03	20	1.1	Eastern Zone
	811.9	852.5	40.6	1.76	0.28	158	13.5	Eastern Zone
FEJ18-119	886.1	895	8.9	0.34	0.04	139	2.2	Eastern Zone
FEJ18-119	287.7 314.1	303.1	15.4 8.8	0.24	0.01	135 174	1.4	Eastern Zone Eastern Zone
		322.9	50.2	0.35			1.7 1.2	
	331.1 427.3	381.3 453	25.7	0.30	0.01	266 98	0.9	Eastern Zone Eastern Zone
	427.3	433	20.95	0.27	0.01	88	0.9	
	501.9				0.00	107		Eastern Zone
		530.5	28.6 15.7	0.23			0.4	Eastern Zone Eastern Zone
	570.1 605.25	585.8 621.2	15.7	0.32	0.00	99 52	0.7	Eastern Zone
FEJ18-120	391.9	513.4	121.5	1.46	0.01	148	7.4	Southwest Zone
1 EJ 10-120	524.1	513.4	25.4	1.46	0.10	754	10.1	Southwest Zone
	570.05	549.5	17.65	6.19	0.17	52	44.4	Southwest Zone
	604.4	629.5	25.1	0.64	0.42	477	6.2	Southwest Zone
	604.4		34.2		0.15		10.2	Southwest Zone
		689.2		0.80		1035		
	705.85	739.5	33.65	0.69	0.05	186	5.0	Southwest Zone
	758.6	774	15.4	0.71	0.10	980	5.0	Southwest Zone
FEJ18-121	823.2 386.3	880.3 394.5	57.1 8.2	0.51	0.04	70 11	2.0 1.3	Western Zone Taquiruta
1 EJ 10-121								
	397.65	420.05	22.4	0.24	0.04	28	1.4	Taquiruta

FEJ18-123 FEJ18-128	296.3	307.15	10.85	2.41	0.17	605	17.4	Eastern Zone
FEJ18-128	010.0				0.17	005	17.4	Eastern Zone
	312.3	355.5	43.2	0.31	0.02	171	1.6	Eastern Zone
	368.9	449.9	81	0.36	0.02	194	1.4	Eastern Zone
FEJ18-129	348.1	413.4	65.3	0.57	0.02	359	2.2	Southwest Zone
	424.15	440	15.85	0.33	0.01	77	1.8	Southwest Zone
	611.5	670.4	58.9	1.45	0.21	512	13.4	Southwest Zone
	813	828.55	15.55	0.59	0.07	229	4.3	Western Zone
	837.3	879.9	42.6	0.88	0.08	142	4.9	Western Zone
FEJ18-131	377.9	416.65	38.75	0.70	0.06	382	3.7	Eastern Zone
	460.3	482.75	22.45	1.93	0.27	764	17.8	Eastern Zone
FEJ18-133	124.6	141	16.4	0.54	0.01	72	2.6	Southwest Zone
	363.5	371.8	8.3	0.25	0.01	16	1.3	Southwest Zone
	595.1	698	102.9	1.27	0.12	670	9.8	Southwest Zone
	722.5	748.8	26.3	0.38	0.02	529	1.4	Southwest Zone
	850.9	867.7	16.8	0.86	0.12	1048	7.3	Southwest Zone
	885.3	935.75	50.45	0.39	0.03	439	1.7	Southwest Zone
	943.9	980.5	36.6	0.50	0.03	277	1.8	Southwest Zone
	1010.1	1018.8	8.7	0.23	0.02	174	0.9	Southwest Zone
FEJ18-135	76.4	91	14.6	0.32	0.00	11	1.5	Southwest Zone
	518.1	585.8	67.7	0.27	0.01	136	0.8	Southwest Zone
	596.9	695.15	98.25	1.22	0.05	555	3.7	Southwest Zone
	712.7	906.45	193.75	0.52	0.04	590	2.0	Southwest Zone
FEJ18-136	360.4	403.9	43.5	0.84	0.08	301	5.1	Eastern Zone
. 2010 100	412.7	490.2	77.5	1.32	0.10	555	8.2	Eastern Zone
	536.8	550	13.2	0.53	0.00	46	2.1	Eastern Zone
	558.8	574.2	15.4	0.54	0.01	168	1.3	Eastern Zone
FEJ18-138	30.9	46.3	15.4	0.26	0.01	4	1.6	Southwest Zone
	347.2	358	10.4	0.22	0.01	52	0.6	Southwest Zone
	393.8	514.7	120.9	0.53	0.03	393	2.0	Southwest Zone
	554.65	707.1	152.45	1.05	0.00	748	4.2	Southwest Zone
	715.9	793.35	77.45	1.30	0.10	261	5.4	Southwest Zone
FEJ18-142	271.1	302.1	31	0.20	0.00	30	0.6	Southwest Zone
1 2010 142	314.9	428.3	113.4	0.94	0.06	306	5.0	Southwest Zone
	613.2	628.3	15.1	2.49	0.10	204	9.7	Southwest Zone
	662.4	684.1	21.7	0.70	0.04	302	3.1	Western Zone
	719.1	905.9	186.8	0.50	0.04	279	2.8	Western Zone
FEJ18-146	295	303.8	8.8	0.32	0.02	70	1.8	Western Zone
	332.9	351.6	18.7	1.13	0.13	1102	11.5	Western Zone
FEJ18-152	507.2	518.4	11.2	0.35	0.01	200	0.8	Southwest Zone
	527.2	587.5	60.3	0.41	0.01	341	1.1	Southwest Zone
	628.85	671.9	43.05	0.55	0.03	250	1.7	Southwest Zone
	689.5	768.2	78.7	0.70	0.04	756	2.9	Southwest Zone
	779.2	842.05	62.85	0.50	0.04	751	2.2	Southwest Zone
FEJ18-167	595	625.6	30.6	0.41	0.02	38	1.6	Northern Zone
	653.2	676.95	23.75	1.04	0.33	645	14.0	Northern Zone
FEJ18-168	417.2	426.25	9.05	2.01	0.20	649	11.1	Eastern Zone
. 2010 100	443.4	512.65	69.25	0.78	0.09	126	5.3	Eastern Zone
	530.3	551.1	20.8	1.23	0.16	146	8.8	Eastern Zone
	568.2	595.05	26.85	0.59	0.06	157	3.8	Eastern Zone
	685.4	694.1	8.7	0.79	0.07	419	5.4	Eastern Zone
	707.5	729.6	22.1	0.33	0.01	222	1.4	Eastern Zone
	741.1	751.4	10.3	0.38	0.02	124	1.3	Eastern Zone
FEJ18-184	389	421.2	32.2	0.23	0.02	62	0.9	Eastern Zone
	434.5	483.1	48.6	0.30	0.02	78	1.5	Eastern Zone
	524.9	543.1	18.2	2.97	0.23	782	20.1	Eastern Zone
	657.55	670.8	13.25	0.30	0.23	92	1.8	Eastern Zone
FEJ19-017	370.3	396	25.7	0.30	0.01	178	3.6	Eastern Zone
0.0 01/	441	468.7	27.7	0.58	0.04	154	3.3	Eastern Zone
	554.15	596.35	42.2	0.72	0.04	385	4.3	Eastern Zone
FEJ19-018	368	383	15	0.38	0.00	207	2.6	Eastern Zone
010 010	405	417.8	12.8	0.63	0.05	172	4.3	Eastern Zone
FEJ19-043	252.4	264.7	12.3	0.03	0.03	33	2.7	Eastern Zone
FEJ19-045	232.4	262.8	35.8	0.20	0.03	51	0.6	Taquiruta
1 2010 040		487	198.4	0.24	0.01	321	1.3	Taquiruta
	/xx n			0.00	0.02	521	1.0	r uqui utu
FEJ19-048	288.6 200	231.2	31.2	0.26	0.01	128	0.8	Taquiruta

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
	285	485	200	0.40	0.02	439	1.4	Taquiruta
FEJ19-065	315	437.2	122.2	0.37	0.01	251	1.0	Southwest Zone
	468	579	111	0.77	0.06	1175	3.9	Southwest Zone
	611	662.05	51.05	1.30	0.14	580	7.4	Southwest Zone
	686.05	730	43.95	1.32	0.19	261	9.5	Southwest Zone
FET17-104	407.45	442.65	35.2	0.36	0.00	220	0.6	Eastern Zone
	450.9	495.05	44.15	0.29	0.00	165	0.5	Eastern Zone
	534.25	553.85	19.6	0.64	0.04	1151	3.2	Eastern Zone
FET17-106	332.3	350.5	18.2	0.21	0.00	65	0.6	Taquiruta
FFT17 407	359.3	383.75	24.45	0.86	0.02	58	2.0	Taquiruta
FET17-107	358.05	368.6	10.55	0.83	0.02	174	3.0	Taquiruta
	392.5	527.6	135.1	0.65	0.01	53	1.8	Taquiruta
	555.7	683.95	128.25	0.65	0.01	311	1.3	Taquiruta
	715.5	808.75	93.25	0.35	0.01	352	0.7	Taquiruta
	847.55	889.2	41.65	0.36	0.01	188	0.7	Taquiruta
	898.2	965.9	67.7	0.30	0.01	177	0.6	Taquiruta
FFT17 100	1059.8	1143.3	83.5	0.34	0.01	165	0.9	Taquiruta
FET17-108	425.4	571.9	146.5	0.62	0.02	101	1.7	Taquiruta
	619.1	834.05	214.95	0.56	0.02	554	1.3	Taquiruta
	849.5	890.4	40.9	0.33	0.01	781	1.2 0.7	Taquiruta
	902.9	985.3	82.4	0.38	0.01	400		Taquiruta
	1000	1025.25	25.25	0.47	0.01	432	0.9	Taquiruta
FFT17 110	1037.7	1145.8	108.1	1.11	0.05	318	2.2	Taquiruta
FET17-116	385.85	400.15	14.3	0.40	0.01	25	0.7	Eastern Zone
	450.6	463.8	13.2	0.26	0.00	168	0.6	Eastern Zone
ГГТ17 117	494.6 495.7	509.1 513.3	14.5 17.6	1.49	0.11	294	10.0	Eastern Zone
FET17-117	573.3	630	56.7	0.21 0.31	0.01	16 56	0.8	Taquiruta
		757.3			0.01		1.5	Taquiruta
	638.8 788.4	1045.3	118.5 256.9	0.46		336 777	1.5	Taquiruta
FET17-118	489.1	505.2	16.1	0.40 0.35	0.01	46	1.0	Taquiruta
FE11/-110	514	566.9	52.9	0.35	0.01	46 66	1.3	Taquiruta
	578.7	590.9	12.2	0.32	0.01	19	0.9	Taquiruta Taquiruta
	610.7	761.1	12.2	0.25	0.01	209	1.1	Taquiruta
	875.4	884.2	8.8	0.32	0.01	128	0.4	Taquiruta
	893	916.4	23.4	0.20	0.00	234	0.4	Taquiruta
	925.2	948.3	23.4	0.32	0.00	108	0.8	Taquiruta
FET17-127	513.1	528	14.9	0.32	0.01	100	1.0	Taquiruta
FET17-128	412.5	421.8	9.3	1.23	0.01	120	7.7	Taquiruta
1211/ 120	472.4	481.5	9.1	2.51	0.12	12	18.1	Taquiruta
	632.4	774.5	142.1	0.59	0.01	227	1.6	Taquiruta
	830.85	852.5	21.65	0.34	0.01	47	1.3	Taquiruta
FET18-106	459.8	468.6	8.8	0.29	0.00	35	1.2	Taquiruta
	479.6	499.4	19.8	0.26	0.00	49	1.0	Taquiruta
	533.5	678.6	145.1	0.38	0.01	214	0.9	Taquiruta
	698.05	987.8	289.75	0.39	0.03	347	1.7	Taquiruta
FET18-112	605.2	640.9	35.7	0.21	0.00	11	0.7	Taquiruta
	726.95	743.6	16.65	0.22	0.00	12	0.7	Taquiruta
	774.4	970	195.6	0.45	0.03	647	1.1	Taquiruta
FET18-122	544.3	583.9	39.6	0.27	0.00	73	0.7	Taquiruta
	592.7	604.05	11.35	0.36	0.00	132	0.5	Taquiruta
	612.7	749.5	136.8	0.38	0.01	278	0.7	Taquiruta
	794.95	1085.9	290.95	0.41	0.03	449	1.7	Taquiruta
	1095.9	1287.9	192	0.38	0.03	124	1.5	Taquiruta
FET18-130	799.4	955.15	155.75	0.29	0.01	261	0.7	Taquiruta
	1031.05	1248	216.95	0.69	0.07	507	3.2	Taquiruta
FET18-132	431.4	449	17.6	0.21	0.01	52	0.8	Southwest Zone
	482	512.8	30.8	0.22	0.01	54	0.7	Southwest Zone
	548.45	561.6	13.15	0.30	0.01	160	1.1	Southwest Zone
	570.4	589	18.6	0.22	0.00	91	0.7	Southwest Zone
	606.6	638.9	32.3	0.39	0.01	124	1.0	Southwest Zone
	649	681.2	32.2	1.18	0.04	248	2.9	Southwest Zone
	704.25	869.1	164.85	0.46	0.03	423	1.8	Southwest Zone
	883.5	892.3	8.8	0.24	0.03	93	1.3	Southwest Zone
FET18-139	514.1	531.7	17.6	0.42	0.01	15	1.4	Taquiruta

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
	600.3	752.9	152.6	0.44	0.01	170	1.1	Taquiruta
	790.4	813.75	23.35	0.50	0.02	437	1.2	Taquiruta
	825.7	844.9	19.2	0.37	0.01	436	1.0	Taquiruta
FET18-144	577.3	590.5	13.2	0.24	0.00	54	0.7	Taquiruta
	604.2	673.5	69.3	0.27	0.00	55	0.6	Taquiruta
	684.5	706.5	22	0.22	0.00	71	0.3	Taquiruta
	713.1	821.5	108.4	0.45	0.00	238	1.1	Taquiruta
	851.3	919.4	68.1	0.27	0.01	668	0.8	Taquiruta
	956.3	971.3	15	0.29	0.02	291	0.9	Taquiruta
	986.3	1133	146.7	0.67	0.03	623	1.6	Taquiruta
	1155.5 1258.4	1217.5 1308.4	62 50	0.36	0.01	192 196	0.8	Taquiruta Taquiruta
FET18-145	330	371.6	41.6	0.34	0.00	45	1.3	Taquiruta
	389.2	409.8	20.6	0.50	0.00	174	1.2	Taquiruta
	418.4	442.6	24.2	0.42	0.01	268	1.5	Taquiruta
	491	529.2	38.2	0.69	0.02	202	1.7	Taquiruta
	540.2	563.7	23.5	1.99	0.05	374	5.0	Taquiruta
	646.8	659.6	12.8	1.74	0.04	186	6.5	Taquiruta
FET18-147	388.2	509.8	121.6	0.49	0.01	463	0.9	Taquiruta
	518.6	573.7	55.1	0.31	0.01	260	0.7	Taquiruta
	584.7	595.7	11	0.30	0.01	18	0.8	Taquiruta
	675.6	690	14.4	0.28	0.01	236	1.4	Eastern Zone
	760.6	798	37.4	0.61	0.03	432	1.8	Eastern Zone
	848.4	869.3	20.9	1.31	0.14	96	7.0	Eastern Zone
FET18-149	273.3	288.7	15.4	0.50	0.02	436	1.9	Taquiruta
	336.5	350.7	14.2	0.37	0.01	70	1.4	Taquiruta
FET18-154	441.8 891.6	878.4 901.5	436.6 9.9	0.46	0.02	362 47	1.3 0.5	Taquiruta Taquiruta
	973.9	1019.55	45.65	0.21	0.01	169	2.1	Eastern Zone
	1056	1103.5	43.03	0.47	0.03	44	1.3	Eastern Zone
FET18-159	672.6	682.2	9.6	0.45	0.02	207	1.3	Taquiruta
	704.2	791.5	87.3	0.38	0.02	501	1.4	Taquiruta
	806.2	997.65	191.45	0.40	0.03	561	1.6	Taquiruta
	1037.2	1229.1	191.9	0.47	0.03	164	1.6	Taquiruta
FET18-161	369.9	381.2	11.3	0.38	0.01	43	1.3	Taquiruta
	392.2	568	175.8	0.69	0.02	239	1.3	Taquiruta
	594.4	603.6	9.2	0.23	0.00	36	0.6	Taquiruta
	687.2	700	12.8	0.49	0.01	227	0.8	Taquiruta
	805.1	831.5	26.4	0.27	0.01	85	0.7	Taquiruta
FET18-162	350.1	365.5	15.4	0.27	0.00	206	1.0	Taquiruta
	387.5	413.2	25.7	0.38	0.01	87	1.2	Taquiruta
	784.5 810.85	795 822.8	10.5 11.95	0.50 1.31	0.04	15 81	3.6 4.8	Eastern Zone Eastern Zone
FET18-176	530.05	560.95	30.9	0.41	0.04	195	0.8	Taquiruta
1 L 1 10-170	599.85	723.2	123.35	0.41	0.01	538	1.0	Taquiruta
	733.2	748.2	120.00	0.24	0.01	523	1.1	Taquiruta
	765.7	987.2	221.5	0.33	0.03	45	1.4	Taquiruta
	997.2	1013.7	16.5	0.26	0.02	60	1.3	Taquiruta
	1030.15	1041.2	11.05	0.22	0.01	66	0.9	Taquiruta
FET19-027	427.3	473.7	46.4	0.83	0.02	150	1.6	Eastern Zone
FET19-049	499.15	739	239.85	0.41	0.03	403	1.5	Taquiruta
FET19-053	415	505	90	0.38	0.04	86	1.6	Taquiruta
	518	550	32	0.23	0.03	42	1.3	Taquiruta
	577	616.2	39.2	0.37	0.04	30	1.5	Taquiruta
FEEX20-001-01	463	472	9	0.56	0.01	93	2.1	Western Zone
	528.6	538.45	9.85	0.59	0.05	117	4.6	Western Zone
	581.5 675.8	643 691	61.5 15.2	0.31	0.04	286	2.3	Western Zone
	6/5.8	796		0.76	0.09	340	6.8	Western Zone Western Zone
FEEX21-001	449	601	81 152	0.64	0.07	165 277	3.0 4.6	Eastern Zone
1 LLAZ 1-001	-	790	79	0.89	0.10	277	4.0	Eastern Zone
	711		13	0.55			1.5	
FFFX21-002	711 339			0 50	0 08	22	2 1	Fastern Zone
FEEX21-002	339	399.1	60.1	0.59 0.45	0.08	22 98	3.1	Eastern Zone Eastern Zone
FEEX21-002	339 423.45	399.1 440.2	60.1 16.75	0.45	0.07	22 98 94	2.7	Eastern Zone
FEEX21-002	339	399.1	60.1			98		

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
FEEX21-003-01	352.6	376	23.4	0.25	0.03	14	0.9	Eastern Zone
T LLX21-003-01	386.05	464.85	78.8	0.23	0.05	14	3.0	Eastern Zone
FEEX21-005-01	383.3	404.83	95.7	0.49	0.03	107	4.4	Northern Zone
T LLX21-003-01	494	514	20	0.81	0.10	512	0.7	Northern Zone
	546	568	20	0.23	0.02	68	0.7	Northern Zone
	631	653	22	0.24	0.02	56	2.1	Northern Zone
FEEX21-006-01	320	334	14	0.37	0.03	69	1.9	Northern Zone
TELXET 000 01	357	382.3	25.3	0.45	0.05	44	2.0	Northern Zone
	441	463	22	0.22	0.02	114	0.9	Northern Zone
	521	691.6	170.6	0.69	0.02	76	2.9	Northern Zone
FEEX21-007	452.05	469.55	17.5	0.28	0.04	262	1.4	Northern Zone
/_	486	498	12	0.69	0.03	512	2.3	Northern Zone
FEEX21-007-02	419	483	64	1.86	0.11	823	7.1	Northern Zone
FEEX21-007-03	464	480	16	0.57	0.02	9	2.3	Northern Zone
FEEX21-014-01	387	406	19	0.37	0.08	153	3.8	Northern Zone
/_	479.35	700	220.65	0.38	0.02	116	1.4	Northern Zone
FEEX22-003	406	414.2	8.2	0.24	0.01	181	1.0	Eastern Zone
FEEX22-003-01	520	577	57	0.31	0.02	181	1.3	Eastern Zone
1 LLX22-003-01	590.2	666	75.8	0.31	0.02	101	1.3	Eastern Zone
	740.7	827	86.3	0.52	0.02	54	3.3	Eastern Zone
	836	846	10	0.33	0.08	30	0.7	Eastern Zone
FEEX22-005	304	316	10	0.21	0.02	699	0.7	Eastern Zone
FEEX22-005-01	473	488	12	0.30	0.00	48	1.4	Eastern Zone
FEEX22-005-01	775	1023.6	248.6	1.09	0.02	48	5.5	Western Zone
FEEX22-006-01	536.2	547.55	11.35	0.43	0.01	32	2.5	Western Zone
T LLX22-000-01	569.5	582.65	13.15	0.43	0.01	93	2.3	Western Zone
	611.1	620	8.9	0.49	0.01	121	2.0	Western Zone
	745.4	756.7	11.3	1.89	0.03	1846	15.5	Western Zone
	771	730.7	20	0.97	0.20	559	7.7	Western Zone
	800.3	867	66.7	0.89	0.13	231	4.7	Western Zone
FEEX22-007	367.7	404.45	36.75	0.03	0.14	97	4.7	Western Zone
TELX22 007	428	555	127	1.07	0.03	140	8.2	Western Zone
FEEX22-008-02	1422	1434.2	12.2	0.41	0.13	55	1.0	Western Zone
FEEX22-009	336.2	360.55	24.35	0.41	0.01	42	1.0	Western Zone
TELAZZ 000	374.9	387.65	12.75	1.10	0.01	56	8.4	Western Zone
	425	441	12.70	0.64	0.09	161	6.2	Western Zone
	452.2	468.4	16.2	1.04	0.08	39	5.5	Western Zone
	478	647	169	1.10	0.15	178	8.1	Western Zone
FEEX22-010	571.35	582	10.65	1.46	0.06	179	9.2	Western Zone
	798	808	10	0.40	0.02	123	3.2	Western Zone
	827.45	865	37.55	0.26	0.01	73	1.0	Western Zone
	873.6	1001	127.4	0.42	0.11	259	1.2	Western Zone
FEEX22-011	638	648	10	0.26	0.01	1057	0.8	Eastern Zone
	664	672	8	0.41	0.03	193	2.3	Eastern Zone
	687.15	729.6	42.45	1.07	0.05	719	4.9	Eastern Zone
	868	884.9	16.9	0.28	0.02	173	1.7	Eastern Zone
FEEX22-012	299	345.25	46.25	0.84	0.07	215	5.0	Southwest Zone
	354	382.3	28.3	1.91	0.22	468	18.5	Southwest Zone
	407	415.1	8.1	2.53	0.27	125	15.8	Western Zone
	442.9	532	89.1	0.91	0.13	276	6.8	Western Zone
	557.9	566.1	8.2	0.42	0.04	129	1.6	Western Zone
FEEX22-013	913	922	9	0.21	0.01	107	1.2	Southwest Zone
	938	960	22	0.49	0.06	291	3.0	Southwest Zone
FEEX22-014	293.05	325.9	32.85	3.60	0.38	182	25.1	Southwest Zone
	368.2	385	16.8	0.48	0.06	251	4.8	Western Zone
	443.65	512.75	69.1	0.59	0.07	503	3.8	Western Zone
	566.1	699	132.9	0.73	0.08	146	4.3	Western Zone
FEEX22-015	457	511.5	54.5	1.24	0.11	1343	8.2	Eastern Zone
	555.55	709.45	153.9	0.84	0.10	611	5.4	Eastern Zone
	742	757.9	15.9	0.80	0.12	43	4.9	Eastern Zone
	767	836	69	0.45	0.06	61	2.6	Eastern Zone
	869	932.6	63.6	1.01	0.16	51	5.8	Eastern Zone
FEEX22-019	534.6	545	10.4	0.24	0.01	149	0.8	Northern Zone
FEEX22-019			10.4 98	0.24	0.01	149 454	0.8 1.3	Northern Zone Northern Zone

	Enome (ma)	To (m)	Longth (m)	C:: (9/)	A (m/t)	Manna	A m (m / t)	Zana
Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
	805.5	815	9.5	4.77	0.16	330	12.8	Northern Zone
	830.3	866	35.7	0.55	0.03	159	3.5	Northern Zone
	882	894	12	0.58	0.03	225	4.4	Northern Zone
	925	954.6	29.6	0.30	0.02	144	1.2	Northern Zone
	1060	1139.4	79.4	0.65	0.09	98	3.4	Northern Zone
FEEX22-026	812.2	855	42.8	0.29	0.03	422	2.1	Eastern Zone
	865	880	15	0.21	0.01	105	0.8	Eastern Zone
	886	904	18	0.27	0.02	102	1.1	Eastern Zone
FEEX22-027	151	163	12	0.25	0.01	23	0.9	Eastern Zone
	381.05	392	10.95	0.39	0.02	34	2.7	Eastern Zone
FEIN20-005	128	138	10	0.40	0.02	132	1.1	Eastern Zone
FEIN21-026	256.5	276.2	19.7	0.34	0.01	19	1.1	Southwest Zone
	301.8	312	10.2	0.23	0.00	32	0.7	Southwest Zone
550,000	334	624.7	290.7	0.45	0.03	428	1.6	Southwest Zone
FEIN21-030	166	208	42	0.42	0.03	120	1.9	Eastern Zone
	218	290	72	0.37	0.02	235	1.7	Eastern Zone
	326	364	38	0.20	0.00	89	0.4	Eastern Zone
	376	398	22	0.29	0.01	90	0.5	Eastern Zone
FEIN21-031	226	238	12	0.76	0.06	77	4.6	Eastern Zone
FEIN21-033	428	513.55	85.55	0.39	0.01	49	1.1	Taquiruta
	594.9	700	105.1	0.51	0.02	508	1.2	Taquiruta
FEIN21-035	240	248	8	0.24	0.01	8	0.7	Taquiruta
	261.35	275	13.65	0.24	0.00	37	0.6	Taquiruta
	301	309.9	8.9	0.26	0.01	26	0.6	Taquiruta
	336	411.5	75.5	0.29	0.01	112	0.6	Taquiruta
	460.4	532	71.6	0.43	0.02	517	1.2	Taquiruta
	540.05	619	78.95	0.47	0.04	181	1.8	Taquiruta
	631	659	28	0.24	0.02	78	0.9	Taquiruta
FEIN21-036	166	178	12	1.05	0.06	102	6.1	Eastern Zone
FEIN21-037	162	188	26	0.24	0.02	157	1.6	Eastern Zone
FEIN21-041	176	212	36	0.96	0.08	315	6.1	Eastern Zone
FEIN21-042	439	452	13	0.27	0.01	79	0.9	Taquiruta
	462	526	64	0.25	0.00	44	0.7	Taquiruta
	564.6	573.1	8.5	0.53	0.01	117	1.1	Taquiruta
	628	658.5	30.5	0.32	0.01	467	0.7	Taquiruta
FEIN21-063	367	557.1	190.1	0.49	0.03	393	1.6	Taquiruta
	619.4	654.9	35.5	0.44	0.05	83	1.9	Taquiruta
FEIN21-073	334	392	58	0.35	0.01	143	0.7	Taquiruta
	416.5	735	318.5	0.50	0.03	445	1.3	Taquiruta
	745	760	15	0.42	0.03	73	1.5	Taquiruta
FEIN21-086	348	440	92	0.44	0.01	302	0.8	Taquiruta
	456	488	32	0.24	0.01	128	0.6	Taquiruta
	512	629	117	0.45	0.04	329	1.7	Taquiruta
	687	715	28	0.76	0.09	68	3.9	Taquiruta
FEIN21-090	200	236	36	0.31	0.01	173	1.1	Northern Zone
	284	293	9	0.46	0.02	118	2.5	Northern Zone
FEIN21-093	208	228	20	0.27	0.01	76	0.5	Northern Zone
FEIN21-095	240	256	16	0.22	0.01	104	0.7	Northern Zone
FEIN21-096	283	323.5	40.5	0.25	0.00	98	0.6	Taquiruta
	349	382	33	0.31	0.01	132	0.5	Taquiruta
	442	618	176	0.51	0.05	514	2.2	Taquiruta
	634.45	647.8	13.35	0.27	0.02	153	0.9	Taquiruta
FEIN21-101-01	355	367.85	12.85	0.30	0.01	116	1.2	Northern Zone
FEIN21-108	92	108	16	0.24	0.02	26	1.0	Taquiruta
FEIN21-109	124	133.65	9.65	0.23	0.04	12	0.9	Taquiruta
	144.3	154	9.7	0.62	0.10	14	2.8	Taquiruta
FEIN21-119	482	567	85	0.41	0.04	69	1.9	Taquiruta
	579	650.3	71.3	0.26	0.02	81	1.3	Taquiruta
FEIN21-135	176	260	84	0.62	0.03	126	3.5	Northern Zone
FEIN21-157	440	454.2	14.2	0.30	0.01	650	1.7	Northern Zone
FEIN21-160	186	210	24	0.25	0.02	256	1.2	Taquiruta
FEIN21-163-01	358	440	82	0.33	0.03	402	1.4	Northern Zone
FEIN21-168	316	350	34	0.26	0.01	164	0.9	Northern Zone
	100	105	10	0.43	0.05	177	3.8	Eastern Zone
FEIN22-022	122	135	13					
FEIN22-022 FEIN22-032 FEIN22-039	82 168	92	13 10 16	1.44	0.08	27 109	4.0	Taquiruta Eastern Zone

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)	Zone
FEIN22-040	342	475.5	133.5	0.47	0.04	326	1.8	Taquiruta
FEIN22-065	196	206	10	1.68	0.22	100	12.2	Western Zone
FEIN22-066	241	357	116	0.48	0.03	405	2.0	Taquiruta
	372.45	403	30.55	0.23	0.02	247	0.9	Taquiruta
FEIN22-067	147	159	12	0.32	0.01	118	0.9	Taquiruta
	177	210.4	33.4	0.32	0.01	140	1.2	Taquiruta
	254.45	300	45.55	0.52	0.13	232	1.7	Taquiruta
FEIN22-079	218	240	22	0.79	0.08	353	4.1	Western Zone
FEIN22-081	224.4	245.5	21.1	0.30	0.03	75	1.2	Taquiruta
FEIN22-082	203	230	27	2.77	0.42	219	16.0	Western Zone
FEIN22-091	208	222	14	0.65	0.08	1039	4.6	Western Zone
FEIN22-130	192	210	18	0.67	0.05	121	3.5	Western Zone
FEIN22-131	204	212	8	0.45	0.06	250	3.3	Western Zone
FEIN22-133	152	170	18	0.40	0.20	3	2.4	Northern Zone
FEIN22-137	200	232	32	0.77	0.07	140	4.8	Eastern Zone
FEIN22-140	219.1	372	152.9	1.15	0.15	579	6.6	Western Zone
	394.3	420	25.7	2.90	0.40	2442	32.9	Western Zone
FEIN22-153	226	248	22	0.39	0.03	60	2.0	Western Zone
	262	280	18	0.36	0.02	60	2.4	Western Zone
FEIN22-155	274	304.65	30.65	0.50	0.03	165	2.8	Northern Zone
	317.6	347.05	29.45	1.45	0.07	27	10.7	Northern Zone
FEIN22-156	162	178	16	2.57	0.30	177	16.1	Western Zone
	194	208	14	0.21	0.02	43	1.4	Western Zone
	240	254	14	0.21	0.02	195	1.7	Western Zone
FEIN22-157	208	220	12	0.26	0.02	95	1.5	Western Zone
	280	312	32	0.32	0.03	64	1.8	Western Zone
FEIN22-160	164	300	136	0.96	0.14	199	9.4	Western Zone
FEIN22-162	197.65	209	11.35	0.13	0.01	65	0.6	Western Zone
FEIN22-164	76	118	42	0.38	0.05	29	1.8	Taquiruta
FEIN22-165-01	216.2	320	103.8	2.06	0.26	515	12.9	Western Zone

Note: All reported intersections were determined by the presence of anonymously high Cu, generally greater than 0.2%Cu.

Table 3 - Drillhole collar and surveys

Note: Azimuth and dips are given for the collars (COLLAR_AZ and COLLAR_DIP) and for the end of holes (EOH_AZ and EOH_DIP) to be able to plot directional holes, and holes that have deviated.

				COLLAR	COLLAR	EOH	EOH_	
HOLE ID	EAST	NORTH	ELEV	_AZ	_DIP	DEPTH	AZ	EOH_DIP
FE39300-1	793824	8439303	3766	225.0	-60.0	181.7	225.0	-59.0
FE39300-2	793155	8439310	3866	215.0	-59.7	731.0	232.1	-45.6
FE39350-1	793615	8439349	3800	35.0	-59.5	452.3	42.7	-56.6
FE39400-1	793041	8439401	3858	215.0	-60.0	317.0	224.4	-62.5
FE39400-2	793548	8439393	3799	35.0	-59.5	850.0	39.1	-58.8
FE39400-3	793278	8439400	3842	35.0	-60.7	889.9	34.8	-57.1
FE39425-1	793654	8439435	3782	35.0	-64.1	528.4	36.3	-66.1
FE39425-2	793597	8439422	3797	35.0	-60.5	641.2	40.1	-58.0
FE39425-4	793148	8439418	3842	35.0	-60.4	855.6	35.5	-58.3
FE39450-1	793371	8439436	3830	35.0	-62.7	730.6	36.8	-80.8
FE39450-2	793226	8439449	3828	35.0	-60.2	848.2	36.2	-56.9
FE39475-2	793512	8439479	3788	35.0	-62.1	704.0	33.7	-63.0
FE39475-3	793592	8439478	3782	35.0	-64.5	551.8	43.9	-63.7
FE39475-4	793004	8439483	3845	35.0	-64.7	726.9	33.9	-64.6
FE39475-5	793485	8439464	3803	35.0	-70.9	820.1	35.6	-70.3
FE39500-1	793679	8439506	3769	35.0	-60.3	523.2	40.0	-59.9
FE39500-4	793091	8439505	3838	35.0	-65.7	929.7	36.4	-61.6
FE39525-1	793610	8439503	3772	35.0	-65.4	986.0	36.7	-63.2
FE39525-2	793226	8439516	3811	35.0	-62.3	869.7	48.0	-52.3
FE39525-2 FE39550-3	793226	8439516	3775	35.0	-60.4	720.8	33.2	-52.3
FE39550-3 FE39550-7	793543	8439552	3791	35.0	-59.4	1006.0	38.2	-59.4
		8439586		35.0				-58.4
FE39575-1 FE39575-17	793690 793782	8439585	3770 3776	35.0	-60.7 -60.5	532.9 473.2	37.6 35.5	-58.4
FE39575-17 FE39575-3	793782	8439585	3770	35.0	-59.7	473.2	35.5	-55.1
FE39575-4	793742	8439576	3769	70.0	-59.7	438.3	78.8	-58.3
FE39575-6	793639	8439580	3771	35.0	-65.4	500.7	42.0	-66.7
FE39575-7	793141	8439568	3819	35.0	-59.8	790.6	49.4	-49.3
FE39575-8	793269	8439586	3795	35.0	-60.2	764.3	42.7	-57.4
FE39600-1	793001	8439601	3839	35.0	-60.3	652.8	33.3	-61.6
FE39600-2	793218	8439605	3799	35.0	-59.8	722.3	44.3	-56.0
FE39600-3	793577	8439596	3771	35.0	-56.0	928.8	34.5	-52.7
FE39625-3	793138	8439633	3803	35.1	-59.6	791.7	49.5	-60.5
FE39650-10	793283	8439641	3783	35.0	-60.3	602.4	32.2	-59.8
FE39650-11	792844	8439652	3834	35.0	-60.6	929.2	37.0	-59.6
FE39650-3	793734	8439652	3801	35.0	-59.8	489.2	45.2	-54.4
FE39650-7	793441	8439647	3780	35.0	-59.4	933.8	53.7	-48.8
FE39650-8	793554	8439652	3775	35.0	-64.7	595.6	34.7	-64.6
FE39675-4	793037	8439664	3811	35.0	-60.1	665.0	46.5	-57.6
FE39700-10	793170	8439695	3783	35.0	-60.9	530.0	38.1	-61.4
FE39700-11	792796	8439709	3812	35.0	-60.9	786.0	36.7	-57.3
FE39700-2	792907	8439690	3819	35.0	-65.1	894.4	37.2	-64.0
FE39700-8	793604	8439712	3805	35.0	-60.6	665.3	38.9	-60.5
FE39700-9	792973	8439700	3820	35.0	-62.5	757.0	39.9	-63.8
FE39725-2	793562	8439732	3806	35.0	-60.1	700.7	49.4	-55.3
FE39725-3	793119	8439728	3785	35.0	-59.7	576.1	33.0	-60.9
FE39725-5	793291	8439716	3792	35.0	-59.7	549.4	38.3	-59.5
FE39750-10	793554	8439758	3811	35.0	-59.9	720.2	43.8	-61.5
FE39750-11	793069	8439753	3790	35.0	-70.4	645.0	40.0	-71.1
FE39750-2	793207	8439762	3800	35.0	-59.8	496.5	35.9	-59.3
FE39775-6	793639	8439769	3836	35.0	-55.2	795.0	40.3	-52.2
FE39800-7	792841	8439806	3800	35.0	-60.6	800.6	41.8	-60.6
FE39825-11	792688	8439824	3803	35.0	-59.4	491.6	35.9	-60.0
FE39825-13	792672	8439836	3802	320.0	-59.4	349.2	320.5	-59.7
FE39825-2	793110	8439833	3811	35.0	-60.2	503.5	37.8	-61.9
FE39825-8	792908	8439833	3813	35.0	-60.0	636.2	34.5	-60.0
FE39875-11	792879	8439879	3827	35.0	-60.5	870.0	44.8	-61.4
		8439871	3799	35.0	-59.8	498.2	36.5	-60.7
	/92/49	0433071						
FE39875-12A	792749 793323		1	35.0	-58.8	440 4	23 4	-53.9
FE39875-12A FE39925-8	793323	8439918	3837	35.0 35.0	-58.8 -60.5	440.4 626.2	23.4 41.7	-53.9 -46.0
FE39875-12A FE39925-8 FE39950-4	793323 793207	8439918 8439942	3837 3850	35.0	-60.5	626.2	41.7	-46.0
FE39875-12A FE39925-8	793323	8439918	3837					

HOLE ID	EAST	NORTH	ELEV	COLLAR _AZ	COLLAR _DIP	EOH DEPTH	EOH_ AZ	EOH_DIP
FE39975-7	793118	8439980	3846	35.0	-59.3	577.1	37.6	-54.8
FE40000-13 FE40000-8	793039 793175	8440008 8440005	3840 3854	35.0 35.0	-57.3 -60.7	602.2 508.7	33.0 26.6	-58.0 -54.8
FE40000-9	793085	8440006	3852	35.0	-60.4	615.4	39.9	-43.6
FE40025-7	792995	8440034	3847	35.0	-60.4	645.3	34.7	-60.9
FE40025-8	793856	8440037	3927	35.0	-60.9	649.3	40.6	-61.1
FE40050-12	793215	8440040	3872	35.0	-62.4	497.7	41.3	-61.9
FE40050-13	792948	8440043	3846	35.0	-60.1	652.5	41.0	-57.5
FE40050-15	793425	8440060	3850	35.0	-71.8	490.5	34.1	-68.1
FE40050-6	793052	8440054	3853	35.0 45.0	-59.7	603.0 484.3	57.1	-51.6
FE40075-3 FE40075-7	793170	8440077 8440070	3869 3861	35.0	-59.4 -59.5	464.3 659.2	38.7 45.6	-40.1
FE40125-13	793151	8440122	3887	35.0	-67.2	528.7	51.7	-65.4
FE40125-5	793056	8440130	3872	45.0	-60.3	548.4	53.1	-55.3
FE40150-29	793023	8440145	3871	320.0	-78.0	564.4	322.2	-77.8
FE40200-24	794532	8440190	4001	25.0	-59.9	518.0	25.9	-60.5
FE40200-8	793100	8440198	3893	55.0	-70.3	593.0	54.8	-67.5
FE40225-16	793894	8440225	3929	35.0	-57.4	536.0	31.1	-58.3
FE40225-30	794446	8440229	3975	25.0	-59.8	471.1	25.9	-60.8
FE40300-10	793146	8440295	3925	80.0	-69.8	495.8	86.7	-65.4
FE40300-9 FE40325-1	794010 793199	8440301 8440321	3944 3926	35.0 80.0	-60.5 -69.7	560.0 496.8	34.2 82.4	-64.1
FE40325-1	793199	8440321	3920	35.0	-69.7	496.8 655.6	64.6	-71.0
FE40375-13	794112	8440374	3940	35.0	-59.2	360.7	35.2	-58.5
FE40375-14	793912	8440386	3981	35.0	-60.0	591.3	42.9	-56.4
FE40450-11	794668	8440460	4033	190.0	-50.5	327.7	191.1	-52.0
FE40475-5	794067	8440477	3982	35.0	-59.0	380.8	35.7	-59.5
FE40475-8	794120	8440467	3969	35.0	-60.0	413.5	39.3	-54.7
FE40500-15	793544	8440506	3919	35.0	-59.9	845.5	36.4	-60.8
FE40500-16	793477	8440505	3907	35.0	-60.2	830.4	39.4	-60.6
FE40550-14	793517	8440558	3928	35.0	-57.0	814.0	37.8	-58.6
FE40600-16 FE40625-12	793482 793576	8440609 8440632	3941 3960	35.0 35.0	-65.4 -60.3	729.5 769.2	15.1 41.0	-63.5 -61.2
FE40623-12	793548	8440632	3960	35.0	-59.8	665.0	32.7	-58.8
FE40725-10	793677	8440731	4006	35.0	-76.7	641.7	28.1	-77.1
FE40850-17	793632	8440845	3992	35.0	-74.8	633.0	34.2	-75.0
FE40850-9	793478	8440850	3998	35.0	-61.3	635.1	41.5	-61.4
FE40900-1	793434	8440911	4016	35.0	-59.4	572.3	29.9	-60.3
FE40925-5	793324	8440933	3980	35.0	-60.1	612.9	36.0	-62.2
FE41025-1	793935	8441041	4123	35.0	-60.0	474.0	41.6	-61.7
FE41100-5	793375	8441107	4024	35.0	-60.0	651.1	46.1	-55.5
FE41125-3	793552	8441117	4096	10.0	-59.9	455.9	18.0	-55.6
FE41175-12 FE41175-4	793512 793825	8441163 8441187	4087 4125	35.0 35.1	-59.7 -59.5	525.0 474.9	37.0 44.6	-61.3 -61.3
FE41175-6	793581	8441187	4123	35.0	-59.3	474.9	36.3	-60.3
FE41200-6	793659	8441195	4125	35.1	-58.9	555.0	45.9	-61.1
FE41200-8	793740	8441197	4125	35.1	-59.4	449.0	44.8	-61.7
FE41225-3	793509	8441220	4082	35.0	-59.5	549.0	38.9	-60.8
FE41225-5	793611	8441236	4125	35.0	-59.1	450.0	36.2	-61.2
FE41250-2	793482	8441253	4079	35.0	-59.6	581.0	28.4	-60.4
FE41250-5	793589	8441250	4120	35.0	-60.1	486.0	33.1	-62.9
FE41275-7	793459	8441275	4077	35.0	-59.4	593.6	31.3	-59.8
FE41300-1 FE41300-3	794231 793543	8441298 8441297	4153 4120	10.0 35.0	-59.4 -59.6	241.9 490.0	12.1 36.7	-60.7 -61.4
FE41300-3 FE41325-6	793543	8441297 8441314	4120	35.0	-59.0	490.0	36.7	-59.9
FE41350-5	793526	8441357	4120	35.0	-60.4	453.0	33.9	-62.7
FE41350-6	793413	8441340	4071	35.0	-59.3	498.0	37.5	-61.4
FE41400-1	793500	8441405	4120	35.1	-59.6	423.0	42.0	-60.7
FE41450-2	793484	8441464	4121	35.1	-60.0	367.4	43.4	-61.3
FE41450-4	793559	8441449	4159	35.0	-60.2	338.4	36.0	-59.0
FE41550-1	793544	8441552	4166	35.0	-60.5	257.6	37.0	-62.7
FEC18-125	793433	8441397	4104	35.0	-60.3	440.3	36.3	-60.5
FEC18-137	793232	8440940	3945	35.0	-67.6	844.8	31.6	-65.4
FEC18-141	793540	8440979	3872	35.0	-60.0	539.1	37.1	-62.2
FEC18-153 FEC18-155	793522 793321	8441473 8441236	4142 4053	33.6 35.2	-65.6 -50.4	293.8 549.1	35.3 39.4	-65.8 -49.1
FEC18-155	793321	8441230	4053	31.9	-75.7	549.1	39.4	-76.4
FEC18-166	793617	8441232	4048	32.2	-69.7	443.5	35.1	-69.9

HOLE ID	EAST	NORTH	ELEV	COLLAR _AZ	COLLAR _DIP	EOH DEPTH	EOH_ AZ	EOH_DIP
FEC18-173	794602	8441282	4180	300.5	-65.3	324.1	299.8	-65.6
FEC18-180 FEC18-183	794196 793056	8441530 8441832	4240 4268	120.1 33.8	-65.4 -65.4	400.0 466.1	120.6 39.7	-66.2 -66.8
FEC18-186	793036	8441529	4208	50.0	-55.1	362.9	50.7	-55.3
FEEX20-001-01	792732	8440519	3960	93.7	-56.5	864.8	99.6	-56.3
FEEX21-001	793578	8440410	3691	50.2	-63.3	808.4	52.0	-59.7
FEEX21-002	793580	8440410	3691	104.8	-60.6	584.9	105.8	-56.5
FEEX21-003-01	793582	8440411	3691	74.8	-50.0	464.9	81.1	-56.3
FEEX21-004-01	793394	8439947	3721	60.2	-56.5	341.5	69.0	-66.1
FEEX21-005-01	793573	8440502	3691	344.1 346.4	-57.7	729.2	341.2	-66.4
FEEX21-006-01 FEEX21-007	793574 793575	8440500 8440502	3691 3691	346.4	-57.6 -45.0	694.0 580.8	347.5 40.8	-51.7 -42.6
FEEX21-007-02	793575	8440502	3691	37.7	-45.0	540.0	34.3	-19.9
FEEX21-007-03	793575	8440502	3691	37.7	-45.0	545.7	44.4	-29.4
FEEX21-014-01	793571	8440501	3691	6.5	-53.6	700.0	12.2	-59.5
FEEX22-003-01	794214	8440245	3870	251.8	-59.8	972.3	257.1	-33.0
FEEX22-006	792536	8440357	3871	72.4	-44.4	1061.5	76.8	-44.8
FEEX22-006-01	792536	8440357	3871	72.4	-44.4	904.9	92.3	-36.0
FEEX22-006-01-01	792536	8440357	3871	72.4	-44.4	599.1	87.6	-59.6
FEEX22-007 FEEX22-008	792936 792465	8440052 8440184	3725 3869	41.8 50.6	-58.7 -44.9	601.6 550.0	42.4 56.6	-56.4 -44.0
FEEX22-008	792465	8440184	3869	50.6	-44.9	1268.0	36.0	-44.0
FEEX22-008-01	792465	8440184	3869	50.6	-44.9	1436.2	35.6	-50.5
FEEX22-009	792935	8440053	3725	26.9	-49.2	877.1	29.7	-47.9
FEEX22-010	792552	8440350	3871	59.0	-44.2	1027.3	65.3	-44.1
FEEX22-011	794022	8439560	3745	295.8	-69.0	1000.0	303.0	-66.5
FEEX22-012	792935	8440053	3724	32.7	-61.8	671.6	35.3	-59.1
FEEX22-013	792553	8440349	3871	109.3	-66.5	1011.8	107.6	-64.8
FEEX22-014	792934	8440052	3725	20.5	-55.5	708.0	23.9	-56.5
FEEX22-015 FEEX22-019	794024 793506	8439562 8441196	3744 3960	327.8 202.6	-46.0 -62.1	985.1 1139.4	331.7 211.4	-41.3 -61.3
FEEX22-019	793300	8440087	3900	279.7	-61.2	738.0	291.2	-55.1
FEEX22-024	794024	8439561	3744	330.0	-58.0	928.8	338.4	-52.8
FEIN20-004	793476	8440056	3705	32.6	-63.4	300.0	36.8	-64.3
FEIN21-026	792871	8439809	3797	35.5	-64.6	624.7	35.5	-63.5
FEIN21-030	793876	8440023	3587	35.0	-51.0	412.0	29.3	-32.8
FEIN21-033	793300	8439387	3846	35.5	-65.3	700.0	40.9	-62.9
FEIN21-035	793137	8439578	3815	34.4	-62.0	700.0	38.0	-58.7
FEIN21-042 FEIN21-063	793270 793274	8439400 8439513	3845 3812	33.2 35.5	-66.3 -60.5	660.0 680.0	36.3 37.7	-63.5 -58.1
FEIN21-073	793363	8439465	3810	35.5	-67.3	760.0	185.2	-64.7
FEIN21-084	793404	8440156	3617	35.5	-57.8	150.0	28.3	-60.4
FEIN21-086	793187	8439553	3813	34.8	-61.7	720.0	32.8	-56.3
FEIN21-087	793378	8440126	3616	34.5	-57.6	190.0	33.5	-57.2
FEIN21-096	793088	8439596	3816	35.9	-60.0	680.0	38.5	-57.7
FEIN21-111	793346	8440189	3592	38.4	-65.3	132.0	38.5	-65.4
FEIN21-119 FEIN21-123	793450 793352	8439595 8440147	3778 3599	35.8 43.1	-63.6 -56.0	650.3 152.0	34.4 44.6	-60.2 -56.7
FEIN21-123 FEIN21-157	793352	8440147	3695	34.6	-56.0	504.5	36.1	-56.7
FEIN21-159	793554	8440567	3695	34.0	-61.1	490.0	38.4	-60.6
FEIN21-160-01	793279	8439860	3690	46.5	-68.1	317.0	47.0	-72.1
FEIN21-163-01	793528	8440646	3682	35.6	-60.4	450.0	42.8	-53.7
FEIN22-046	793330	8440147	3601	354.3	-78.2	200.0	5.5	-76.9
FEIN22-140	793326	8440454	3572	289.7	-46.0	420.0	291.4	-45.6
FEIN22-155	793413	8440783	3676	315.0	-62.0	380.3	319.5	-62.3
FEIN22-156	793162	8440200	3541	291.0	-54.9	280.0	295.1	-57.3
FEIN22-157 FEIN22-160	793178 793172	8440195 8440222	3541 3540	291.0 291.0	-57.4 -60.3	312.0 300.0	289.7 288.9	-56.0 -54.8
FEJ17-105	793616	8440222	3825	33.7	-52.7	698.5	40.0	-49.3
FEJ17-110	793474	8440203	3810	33.5	-57.3	1181.2	39.0	-55.2
FEJ17-112	793594	8440276	3825	35.9	-52.7	857.5	42.9	-49.5
FEJ17-113	792759	8440527	3960	105.0	-73.7	988.0	106.6	-74.5
FEJ17-115	793556	8439767	3767	161.8	-63.9	735.8	172.7	-62.2
FEJ17-119	793463	8439797	3796	162.2	-65.3	820.0	172.5	-61.7
FEJ17-120	793448	8440014	3807	34.3	-62.6	552.7	40.2	-62.8
FEJ17-124	793532 793379	8440149 8439977	3825 3782	33.0 35.0	-53.5 -53.4	801.9 519.0	42.7 39.1	-48.2 -52.0
FEJ18-101				1 3 7 1 1	-> ≺ /l	1 21411		

HOLE ID	EAST	NORTH	ELEV	COLLAR _AZ	COLLAR _DIP	EOH DEPTH	EOH_ AZ	EOH_DIP
FEJ18-108	793362	8440075	3771	35.0	-60.0	370.3	37.2	-59.0
FEJ18-109	792745	8439804	3801	35.0	-71.4	987.0	43.4	-68.5
FEJ18-113	793539	8440284	3810	35.0	-51.6	912.0	44.4	-45.6
FEJ18-114	793216	8440041	3749	35.0	-61.0	427.3	38.0	-57.0
FEJ18-115	793401	8440087	3770	35.0	-59.5	372.6	35.2	-58.0
FEJ18-116	793513	8440082	3811	35.0	-58.0	919.8	41.9	-53.0
FEJ18-118	793268	8440154	3736	35.0	-62.1	311.5	36.6	-60.7
FEJ18-119	793852	8440034	3721	35.0	-56.2	728.5	37.0	-54.3
FEJ18-120	792746	8439805	3800	35.0	-54.5	955.3	37.6	-49.1
FEJ18-121	793323	8440019	3762	35.0	-59.8	507.1	38.5	-58.5
FEJ18-124	793418	8440138	3766	35.0	-70.0	368.6	35.5	-68.1
FEJ18-128	793817	8439983	3714	35.0	-54.9	449.9	39.4	-52.7
FEJ18-129	792715	8439837	3800	35.0	-50.8	1011.4	37.7	-47.9
FEJ18-131	793713	8439748	3705	35.0	-66.0	701.4	34.2	-65.7
FEJ18-133	792670	8439741	3814	35.0	-63.7	1045.5	39.4	-59.7
FEJ18-135	792751	8439738	3811	35.0	-65.7	962.3	40.5	-59.7
FEJ18-136	793824	8439950	3712	35.0	-53.6	577.1	37.5	-51.7
FEJ18-138	792768	8439795	3799	34.6	-59.2	970.7	38.9	-53.9
FEJ18-142	792709	8439886	3799	33.0	-49.0	942.1	37.8	-48.0
FEJ18-152	792768	8439793	3800	34.4	-68.9	842.1	41.5	-66.6
FEJ18-164	793395	8440166	3764	32.4	-75.5	351.7	35.3	-73.9
FEJ18-167	793420	8440333	3744	35.1	-52.7	755.7	37.7	-50.6
FEJ18-168	793643	8440164	3735	34.9	-55.1	840.9	41.1	-53.8
FEJ18-182	794808	8440590	4089	299.7	-65.1	460.5	303.8	-64.8
FEJ18-184	793740	8440135	3729	34.6	-50.7	682.6	41.2	-48.5
FEJ19-017	793758	8439857	3677	34.4	-54.7	604.4	35.8	-52.2
FEJ19-018	793752	8439803	3681	34.0	-60.0	612.0	32.5	-58.6
FEJ19-043	794028	8440413	3870	65.1	-65.0	360.0	61.4	-65.8
FEJ19-045	792981	8439792	3793	34.7	-61.1	620.6	37.1	-57.5
FEJ19-048	793024	8439767	3789	34.6	-61.0	580.1	36.8	-57.8
FEJ19-050	794237	8440623	3996	34.7	-55.2	275.8	37.5	-54.5
FEJ19-065	792793	8439829	3807	34.9	-54.9	743.7	37.9	-52.3
FET17-104	793653	8439542	3768	32.5	-62.0	593.2	36.8	-58.6
FET17-107	793412	8439362	3813	35.1	-68.3	1149.8	41.0	-61.5
FET17-108	793342	8439374	3839	35.0	-68.0	1145.8	44.6	-59.5
FET17-116	793718	8439537	3768	34.7	-58.4	561.6	40.9	-56.6
FET17-117	793266	8439327	3849	34.7	-67.1	1045.3	46.9	-65.2
FET17-118	793339	8439302	3840	35.1	-67.3	948.3	44.3	-65.2
FET17-127	793543	8439606	3771	163.6	-70.2	605.9	169.8	-68.7
FET17-128	793401	8439259	3818	35.4	-67.5	860.7	42.3	-64.6
FET18-106	793203	8439385	3846	35.0	-65.5	991.3	37.4	-62.1
FET18-112	793298	8439328	3844	35.0	-75.2	970.0	38.3	-71.9
FET18-122	793191	8439395	3846	35.0	-70.6	1301.8	40.3	-65.8
FET18-130	792881	8439433	3889	33.0	-69.7	1270.2	40.1	-64.3
FET18-132	792749	8439679	3827	35.0	-60.0	1031.9	36.6	-57.1
FET18-139	793318	8439315	3844	34.7	-69.7	904.5	37.7	-66.6
FET18-140	793979	8439561	3799	35.0	-75.6	287.7	35.5	-74.3
FET18-144	793215	8439342	3860	34.6	-73.1	1313.2	45.1	-59.9
FET18-145	793606	8439421	3797	31.7	-80.0	814.3	33.6	-78.1
FET18-147	793586	8439480	3782	33.9	-70.1	965.8	39.3	-66.5
FET18-149	793677	8439391	3781	34.3	-77.8	543.7	38.3	-76.5
FET18-154	793402	8439435	3826	35.3	-62.7	1103.5	40.9	-60.1
FET18-156	793603	8439422	3797	214.8	-75.0	550.0	215.1	-74.3
FET18-159	793139	8439451	3838	35.8	-78.4	1251.1	34.8	-74.4
FET18-161	793586	8439479	3782	31.7	-79.2	867.0	34.9	-78.1
FET18-162	793623	8439344	3803	34.8	-64.7	850.0	41.8	-64.2
FET18-176	793140	8439452	3838	34.4	-65.8	1109.7	49.2	-57.8
FET19-025	793734	8439385	3778	33.5	-67.2	321.2	31.8	-65.8
FET19-026	793768	8439434	3766	35.2	-65.8	296.9	37.9	-65.5
FET19-028	793808	8439404	3766	34.7	-65.5	300.0	31.5	-64.8
FET19-028	793723	8439501	3766	34.7	-64.8	504.3	37.0	-64.5
FET19-041 FET19-049	793723	8439501	3766	34.3	-66.3	749.5	37.0	-63.9
FET19-049 FET19-053	793481	8439482	3803	35.6	-62.2	621.1	36.1	-58.6
1 2 1 3 -033	192228	0433014	5/03	34.0	02.2	021.1	50.5	00.0

29 / 57

Appendix 2 - JORC Code 2012 Edition Table 1 – Las Bambas Exploration Activities

The following information complies with the 2012 JORC Code requirements specified by "Table-1 Section 1-2" of the Code.

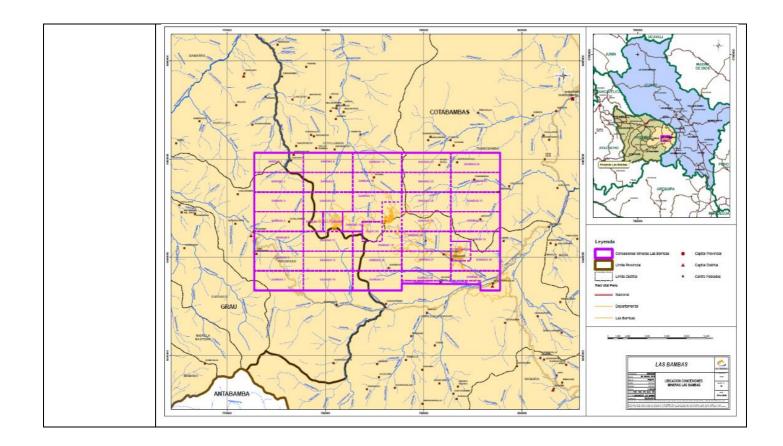
	Section 1 Sampling Techniques and Data
Criteria	Commentary
Sampling techniques	 Diamond drilling (DD) was used to obtain an average 2m sample that is half core split, crushed and pulverised to produce a pulp (95% passing 105µm). Diamond core is selected, marked and numbered for sampling by the logging geologist.
	• Since 2019 samples have also been obtained from Reverse Circulation drilling machines for infil drilling programs, using an automatic rotation splitter to obtain two (duplicate) samples with an average weight of 5Kg corresponding to 2m drilled.
	• Samples for analysis are bagged, shuffled, re-numbered and de-identified prior to dispatch.
	• The information of sampling is stored in the Geobank® database for correlation with returned geochemical assay results.
	• Whole core was delivered to the Inspectorate Laboratory in Lima (2005-2010) and Certimir Laboratory in Lima (2014 to 2015) for half core splitting and sample preparation. From mid-2015 core samples were cut and sampled at an ALS sample preparation laboratory on-site. Samples are then sent to ALS laboratory in Lima for preparation and analysis.
	There are no inherent sampling problems recognised.
	Measures taken to ensure sample representativity include the collection, and analysis of coarse crush duplicates.
Drilling techniques	 Historically, the most widely used technique at Las Bambas is diamond drilling, however, in 2019 the reverse air circulation drilling has been also implemented for infill drilling short-length holes (<300m). Both techniques are used currently however all sample intersections documented in the Report of Exploration Results were derived from DD drilling . RC drilling is also sometimes used to drill pre-collars for deep diamond holes as was utilised for some of the drilling documented in the Report of Exploration Results.
	• Directional drilling is utilised for drilling parts of the resource that are not accessible by conventional drillholes. Mother holes are HQ size, and NQ daughter holes are wedged off and curved to a required orientation. Core is not recovered from the curve.
	• Generally, drill core is not oriented, unless for drill holes for geotechnical purposes. Most or diamond drillholes used in the Mineral Resource estimates have been drilled using HQ size, with the exception of deep directional NQ daughter holes.
Drill sample recovery	Recovery is estimated by measuring the recovered core within a drill run length and recorded in the database. Diamond drill recovery average is approximately 99%. An inverse relationship car be observed between grade and recovery however due to the extremely low samples with poorer recovery this relationship is immaterial.
	• The drilling process is controlled by the drill crew, and geological supervision provides a means for maximising sample recovery and ensures suitable core presentation. No other measures are taken to maximise core recovery.
	• There is no detectable correlation between recovery and grade which can be determined from graphical and statistical analysis. Preferential loss/gains of fine or coarse materials are not significant and do not result in sample bias as the nature of mineralisation is stockwork veins and disseminated sulphides. Diamond core sampling is applied, and recovery is considered high
Logging	100% of diamond drill core and reverse circulation percussion drilling has been geologically and geotechnically logged (DD only) to support Mineral Resources estimation, mining and minera processing studies and reporting of Exploration Results.
	Geological logging is qualitative and geotechnical logging is quantitative. All drill cores and RC chips are photographed.

	Section 1 Sampling Techniques and Data				
Criteria	Commentary				
Sub-sampling	All samples included in this Report of Exploration Results are from diamond core.				
techniques and sample preparation	 Drill core is longitudinally sawn to provide half-core samples within intervals directed by the logging geologist. The remaining half-core is kept and stored in the original sample tray. The standard sampling length is 2m for PQ core (minimum 1.2m) and HQ core (minimum 1.2m maximum 2.2m) while NQ core is sampled at 2.5m (minimum 1.5m). Sample intervals do no cross geological boundaries. 				
	 From 2005 until 2010 geological samples have been processed in the following manner: Dried crushed, pulverised to 95% passing 105µm. Sizing analysis is carried out on 1 in 30 samples. 				
	• From 2010 geological samples have been processed in the following manner: Dried, crushed pulverised to 95% passing 106µm. Sizing analyses are carried out on in 30 samples.				
	• Representativity of samples is checked by duplication at the crush stage one in every 40 samples. No field duplicates are taken for DDH.				
	• 2019 RC Samples were collected in buckets, weighted, and split on-site using a riffle splitter aimed at obtaining 2 to 3 kg subsample, weighted on-site with an electronic balance.				
	 RC drilling sampling practice: less than 4-6 kg, no split is undertaken 6- 12 kg, two subsamples are taken 12-24 kg, a split is undertaken as necessary to get 3 kg sample splits. Since 2020 an automated vibrating rotary splitter has been implemented to take 2m intervations samples in the cyclone, using a couple of trays which take 3 to 6 kg in average (original and duplicate); samples are collected in plastic bags and weighted in an electronic balance on-site ready to be sent to the lab. 				
	• The cone splitter has the option for controlling the rotation speed and the tray aperture, allow to get the amount of material without overspill, or not getting enough material.				
	• In the case of wet samples all the material is collected in microporous bags, to be dried on ai and then split using riffle splitters.				
	• The sample types, nature, quality and sample preparation techniques are considered appropriate for the style of the Las Bambas mineralisation (porphyry and skarn Cu-Mo mineralisation) by the Competent Person.				
Quality of assay data and	From 2005 until 2010 the assay methods undertaken by Inspectorate (Lima) for Las Bamba were as follows:				
laboratory tests	 Digestion by 4-Acids. Cu, Ag, Pb, Zn, Mo - 0.5g of sample, and the determination was done by Atomic Absorption Spectrometry (AAS). Acid soluble - 0.2g sample. Leaching by a 15% solution of H2SO4 at 73°C for 5 minutes Determination by AAS. Acid soluble - 0.2g of sample. Digestion by a citric acid solution at 65°C for 15 minutes 				
	 Determination by AAS. Au – 30g Fire Assay Cupellation at 950°C. Determination by AAS. Above detection lim analysis by gravimetry. 35 elements - Digestion by aqua-regia and determination by ICP. From 2010 to 2015, routine assay methods undertaken by Certimin (Lima) for Las Bambas and analysis analysis and be analysis and be analysis by continue assay methods undertaken by Certimin (Lima) for Las Bambas and analysis analysis analysis analysis by continue assay methods undertaken by Certimin (Lima) for Las Bambas analysis analysis analysis analysis by continue assay methods undertaken by Certimin (Lima) for Las Bambas analysis analysis analysis analysis analysis by continue assay methods undertaken by Certimin (Lima) for Las Bambas analysis analysis analysis analysis analysis analysis by continue assay methods undertaken by Certimin (Lima) for Las Bambas analysis analysis analysis analysis analysis analysis analysis analysis by continue assay methods undertaken by Certimin (Lima) for Las Bambas analysis analys				
	 as follows: Cu, Ag, Pb, Zn, Mo - 0.5g of sample. Digestion by 4-Acids. Determination by Atomi Absorption Spectrometry (AAS). Acid soluble copper - 0.2g sample. Leaching by a 15% solution of H2SO4 at 73°C for minutes. Determination by AAS. Acid Soluble copper - 0.2g of sample. Digestion by a citric acid solution at 65°C for 1 minutes. Determination by AAS. Acid Soluble copper - 0.2g of sample. Digestion by a citric acid solution at 65°C for 1 minutes. Determination by AAS. Au - 30g Fire assay with AAS finish. Over-range results are re-assayed by Gravimetri Finish. 35 elements - Digestion by aqua-regia and determination by ICP. In 2015 ALS (Lima) used the following methods: 				

31	/	57
• •	'	• •

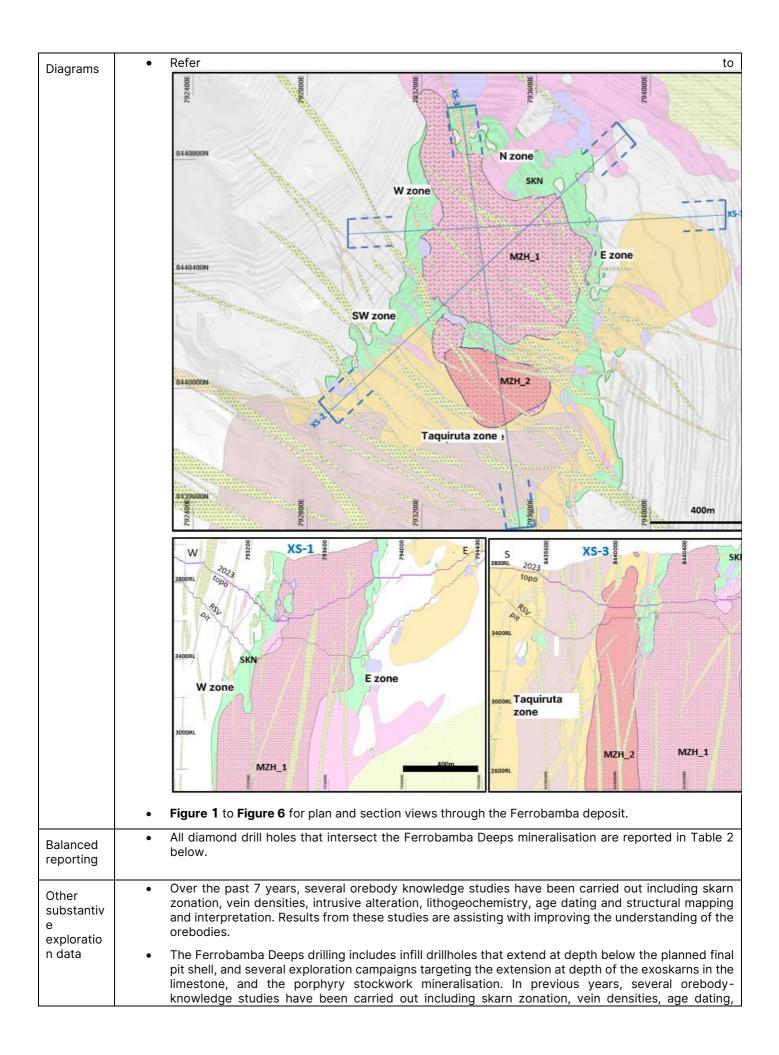
	Section 1 Sampling Techniques and Data
Criteria	Commentary
	 Cu, Ag, Pb, Zn, Mo - 0.5g of sample. Digestion by 4-Acids. Determination by Atomic Absorption Spectrometry (AAS). Acid soluble copper - 0.5g sample. Leaching by a 5% solution of H2SO4 at ambient temperature for 1 hour. Determination by AAS. Au - 30g Fire assay with AAS Finish. Over-range results are re-assayed by Gravimetric Finish. 52 elements - Digestion by aqua-regia and determination by ICP. From 2016 to present routine assay methods undertaken by ALS (Lima) for Las Bambas are as follows:
	 Cu, Ag, Mo. Digestion by 4-Acids and determination by Atomic Absorption Cu Sequential: Cu is reported as soluble in sulfuric acid, Soluble in cyanide and residual. Determination by Atomic Absorption. Au – 30g Fire assay with AAS Finish. Over-range results are re-assayed by Gravimetric Finish. 60 elements - Digestion by 4-Acids and determination by ICP, includes a package of rare earth elements. All the above methods except for acid-soluble copper are considered as a quasi-total digest.
	Until 2017 inclusive, 6-8 meters composite samples were analysed by sequential copper methods.
	• In 2018 and 2019, all unassayed 2m pulps where the original copper grade was >0.1% were analysed by the sequential copper method by ALS Global Laboratory.
	• Currently the pulps are sent for sequential copper analysis for samples that exceed 0.1% Cu.
	• The site previously employed a practice of 'double blind' sample randomisation at the laboratory. It essentially guarantees the secrecy of the results from the operating laboratory. It does however pose a minor risk of compromising sample provenance, although the risk is probably low. This practice has now ceased.
	No geophysical tools, spectrometers or handheld XRF instruments have been used to analyse samples external to the ALS laboratory for the estimation of Mineral Resources.
	• Assay techniques are considered suitable and representative; independent umpire laboratory checks occurred routinely between 2005-2010 using the ALS Chemex laboratory in Lima. Check samples were inserted at a rate of 1 in every 25 samples (2005-2007), every 50 samples (2008) and every 40 samples (2010).
	• For the 2014 to 2018 sampling programs, duplicated samples were collected at the sampling time and securely stored. Samples were then sent to the Inspectorate Laboratory, Lima, for third party (umpire) analysis. The samples were selected at a rate of 1:40. Analytical results indicated a good correlation between datasets and showed no significant bias for copper, molybdenum, silver, and gold.
	In 2019, Certimin was selected as the umpire laboratory, using similar rate of sample selection, 1 in 20 samples, using the criteria to check samples over 0.1% Copper.
	• From 2020 to the present, Las Bambas is using Inspectorate-BV laboratory for the umpire assay checks. In 2021 we used Geobank® software to make the automatic sample selection. The sample selection rate is 1 in 20, checking samples over 0.1% copper.
	• ALS provided quarterly QAQC reports to Las Bambas for analysis of internal laboratory standard performance. The performance of the internal laboratory preparation and assaying processes is within acceptable limits.
	Las Bambas routinely insert:
	 Primary coarse duplicates: Inserted at a rate of 1:25 samples (2005-2007), 1:50 samples (2008), and 1:40 samples (2010-2021). Coarse blank samples: Inserted after a high-grade sample (coarse blank samples currently make up about 4.1% of all samples analysed). Pulp duplicates samples: Inserted 1:25 samples (2005-2007), 1:50 samples (2008), and 1:40 samples (2010-2021).

JZ / J/	32	/	57
---------	----	---	----


	Section 1 Sampling Techniques and Data
Criteria	Commentary
	 Pulp blank samples: Until 2018 inclusive, these controls were inserted before the coars blank sample, and always after a high-grade sample (blank pulp samples currently mak up about 4.1% of all samples analysed). From 2019 to the present, pulp blanks are inserted at a rate of 1 in 100 samples.
	 Certified Reference Material (CRM) samples: Inserted at a rate of 1:50 samples (2005 2006), 1:40 samples (2007) and 1:20 samples (2008 to the present). QAQC analysis has shown that:
	 Blanks: no significant evidence of contamination has been identified during the sample preparation and assay. Duplicates: the analytical precision is within acceptable ranges when compared to th original sample, i.e., more than 90% of the pairs of samples are within the error limit evaluated for a maximum relative error of 10% (R2>0.90). In 2021, all average Coefficier of Variation (CV%) calculated from coarse and pulp duplicates is acceptable. These result were also repeated in the external ALS check samples. Certified Reference Material: acceptable levels of accuracy and precision have bee established. In 2021 we run a recertification Round Robin with the Las Bambas matri CRMs, by the provider OREAS, to get copper-molybdenum-silver determinations b specific AAS and ICP separately, allowing to produce digestion/determination matche Statistics and Control Graphics. Sizing test results were applied to 3% of samples. In 2021, sizing tests results are insid acceptable parameters. Density control was implemented from 2015 onwards; an acceptable density range wa established for each rock type unit for each deposit group of samples.
	• Sample Weight: in 2021, a minimum sample size study was carried out (Agoratek International Consultants Inc.) to verify the current drill sampling and preparation protocols, concluding that the actual average sample weight used are within the safe and acceptable limits to get representative copper and molybdenum analysis. Three kilograms (3kg) are defined as minimum rock sample size for the diamond drilling half-core and the Reverse Circulation chips sampling
Verification of sampling and assaying	Until 2018, sampling and assaying verification by independent personnel was not undertaken a the time of drilling. However, drilling, core logging and sampling data are entered by th geologists; assay results are entered by the geochemistry geologist after the data was checke for outliers, sample swaps, performance of duplicates, blanks and standards, and significar intersections are checked against core log entries and core photos. Errors are rectified befor data is entered into the database.
	• From 2019 to present, the workflow is: logging and sample definition is done by the loggin geology team. The geochemist geologist supervises the QAQC sample insertion and sampl Dispatch to the laboratory. Assays are reported directly to the Database Team for uploading int the database. The geochemist geologist validates the QAQC from each laboratory assa certificated. Subsequently, the data is released for its use.
	 In 2021, Agoratek International Consultants Inc validated the RC sampling process, particularl the automatic sample splitter, based on a heterogeneity test previously obtained fror blastholes, the study endorsed an adequate process both for Cu and Mo, considering th economic cut-off grades of both elements.
	• All drill holes are logged using tablets directly into the drill hole database (Geobank). Befor November 2014, diamond drill holes were logged on paper and transcribed into the database Assay results are provided in digital format (both spreadsheet and PDF) by the laboratories an are automatically loaded into the database after validation. All laboratory primary data an certificates are stored on the Las Bambas server.
	• The database has internal validation processes which prevent invalid or unapproved record from being stored. Additional manual data validation occurs in Geobank [®] and Vulcan softwar before data is used for interpretation and Mineral Resources modelling. The unreliabl information is flagged and excluded from Mineral Resources estimation work.
	• No adjustments have been made to assay data – if there is any doubt about the data quality or location, the drillhole is excluded from the estimation process.

Section 1 Sampling Techniques and Data							
Criteria	Commentary						
Location of data points	 In 2005 collar positions of surface drillholes were picked up by Horizons South America using Trimble 5700 differential GPS equipment. From 2006, the Las Bambas engineering personne have performed all subsequent surveys using the same equipment. Since 2014, drillholes are see out using UTM co-ordinates with a handheld Differential Global Positioning System (DGPS) and are accurate to within 1m. On completion of drilling, collar locations are picked up by the onsite surveyors using DGPS (Trimble or Topcon). During the 2019 drilling campaign MMG team undertook a survey of drillhole collar locations using Differential GPS. But they also used a TN1. Reflex for alignment of the drilling machine. These collar locations are accurate to within 0.5m. 						
	• During the 2014 due diligence process (2014) RPM independently checked five collar location at Ferrobamba and Chalcobamba with a handheld GPS and noted only small differences and we within the error limit of the GPS used. RPM did not undertake independent checking of an Sulfobamba drillholes. The collar locations are considered accurate for Mineral Resource estimation work.						
	 In 2005 the drilling contractor conducted downhole survey's using the AccuShot method for non-vertical drillholes. Vertical holes were not surveyed. If the AccuShot arrangement was not working, the acid test (inclination only) was used. Since 2006, all drillholes are surveyed using Reflex Maxibor II equipment units which take measurements every 3m. The downhole survey are considered accurate for Mineral Resources estimation work. 						
	• The datum used is WGS 84 with a UTM coordinate system zone 18 South.						
	 In 2006 Horizons South America surveyed the topography at a scale of 1:1000 based of aerophotogrametric restitution of orthophotos. A digital model of the land was generated ever 10m and, using interpolation, contour lines were obtained every metre. The maps delivered wer drafted in UTM coordinates and the projections used were WGS 84 and PSAD 56. A triangulater surface model presumably derived from this survey is in current use at site and is considered suitable for Mineral Resources and Ore Reserves estimation purposes. 						
	• Downhole surveys are now routinely completed by modern gyroscope techniques. Instrument such as Champ Navigator, aligner and Gyro Sprint-IQ are employed.						
Data spacing and distribution	The Las Bambas mineral deposits are drilled on variable spacing dependent on rock typ (porphyry vs. skarn). Drill spacing typically ranges from 100m x 100m to 25m x 25m and i considered sufficient to establish the degree of geological and grade continuity appropriate fo Mineral Resources estimation and classifications applied.						
	 Drillhole spacing of approximately 25m x 25m within skarn hosted material and 50m x 50m within porphyry hosted is considered sufficient for long term Mineral Resources estimation purpose based on a drillhole spacing study undertaken in 2015. While the 25m spacing is suitable for Mineral Resource estimation, the Las Bambas deposits tend to have short scale 5m - 10r variations within the skarn that are not captured by the infill drilling at this spacing. This localised geological variability is captured by mapping and drillhole logging. 						
	• Diamond drillhole samples are not composited prior to routine chemical analysis; however, the nominal sample length is generally 2m.						
Orientation of data in relation to geological structure	Overall drillhole orientation is planned at 90 degrees to the strike of the mineralised zone for each deposit. Drillhole spacing and orientation is planned to provide evenly spaced, high angle intercepts of the mineralised zone where possible, thus minimising sampling bias related to orientation. However, in some areas of Ferrobamba where skarn mineralisation is orientated along strike, holes orientations were not adjusted.						
	Drilling orientation is not considered to have introduced sampling bias.						
Sample security	 Measures to provide sample security include: Adequately trained and supervised sampling personnel. Samples are stored in a locked compound with restricted access during preparation. Dispatch to various laboratories via contract transport provider in sealed containers. Receipt of samples acknowledged by receiving analytical laboratory by email and checked against expected submission list. Assay data returned separately in both spreadsheet and PDF formats. 						

Section 1 Sampling Techniques and Data							
Criteria	Commentary						
Audit and reviews	 In 2015, an internal audit, checking 5% of the total samples contained in the acQuire database (at that time) was undertaken comparing database entry values to the original laboratory certificates for Cu, Ag, Mo, As and S. No material issues were identified. 						
	• Given to COVID19 pandemic there was no option to visit the laboratory in the year 2020, re- establishing visits to the lab in 2021.						


35	/	57
----	---	----

Criteria	Commentary								
Interia									
Mineral tenement and land tenure status	 The mineral resources of Peru are owned by the Peruvian State and the private sector calonly exploit them in accordance with the Peruvian system of concessions. According the Peruvian legislation, investors can carry out mining activities in Peru only after obtaining the necessary concessions and the corresponding permits. Therefore, the concession system is the mechanism conceived under Peruvian legislation to grant rights to perform mining exploration, exploitation, processing, and transportation of minerals, among others. Las Bambas consists of 41 mining concessions (collectively, "The Property"), which are lister in the following table: 								
	Name	Identification code	Extension Availab	le _{No.}	Name	Identification code	Extension Available (Ha)		
			(на)				1 • 7		
	1 Bambas 1	10315610	1,000	22	Bambas 22	10317710 10317810	1,000		
	2 Bambas 2	10315710	1,000	23			1,000		
	3 Bambas 3 4 Bambas 4	10315810 10315910	1,000 1,000	24 25		10317910 10318010	1,000		
	5 Bambas 5	10316010	990.9676	25		10318010	1,000		
	6 Bambas 6	10316110	884.788	27	Bambas 27	10318210	1,000		
	7 Bambas 7	10316210	987.9216	28		10318310	500		
	8 Bambas 8	10316310	1,000	29	Bambas 29	10318410	1.000		
	9 Bambas 9	10316410	1,000		Bambas 30	10318510	1,000		
	10 Bambas 10		1,000	31	Bambas 30	10318610	1,000		
	11 Bambas 10	10316610	400	32	Bambas 32	10318710	1,000		
	12 Bambas 12	10316710	1,000	33		10318810	800		
	13 Bambas 13	10316810	1,000	34		10318910	800		
	13 Bambas 13	10316910	1,000		Bambas 35	10319010	700		
	14 Bambas 14	10317010	1,000	36		10409411	141.4319		
	16 Bambas 16	10317110	1,000	37		10409511	123.408		
	17 Bambas 17	10317210	800		Sulfobamba	05580414Z04	400		
	18 Bambas 18	10317310	600		Ferrobamba	05580414204	400		
	19 Bambas 19	10317410	800		Chalcobamba		600		
	20 Bambas 20		1,000	40		05580414203	400		
	20 Bambas 20 21 Bambas 21	10317610	1,000	41	Charcas TOTAL		.34,328		
	the con Subseq Real Pro importa the Sta (that is, within the Each o indeper concess different	cession title in a uently, these we operty Registry o nt to note that the Each of the Minera Las Bam neir internal limit f the rights lin dent of all right sions are located t property and s	valid manner, a ere registered in f the National S nese concession 41 mining conc bas SA) the exc s. ked to the mints related to I. In effect, the N separate from the	fter the yster ns are essic lusiv hing the fining	having com Registry of n of Public e valid and ons that co e right to ex concession surface (i.e g Law estate nd property	Pipleted the correst Mining Rights the Registries for an i enforceable agai mprise the Proper plore and exploit ns that comprise e., surface lots) plishes that the m y where it is loca	omprise the Propert sponding procedur nat forms part of the indefinite period. It inst third parties are erty grant its owne t all metallic minerate where said mining ining concession is ted. The below ma . Tenure over the a		

 Initial exploration drilling commenced in Chalcobamba in 1996 by Cerro de Pasco followed by Cypr in the same year, totalizing 2,273m of diamond drill cores; in 1997 Phelps Dodge and BHP execut 2,416m of diamond drilling in Ferrobamba and Chalcobamba, and in 2003 Pro Invest drilled 2,328 of DDH in the same targets, as outlined in the table below. 									
Sul Inte pur the	fobamba. ernational chase the data base	Later in 2013, Gle Investment Corp Las Bambas pro	n aggressive dr encore and Xstrat poration Limited a oject from Glenco timation purpose	a merged to and CITIC Me re plc. It is n	form Glenco etal Co. Ltd e oticeable tha	re plc., ther entered inte at the availa	n MMG Ltd, G o an agreem able informat		
Company	Year	Deposit	Purpose	Туре	# of DDH	Drill size	Metres Drilled		
Phelps Dodge	1997	Ferrobamba	Exploration	DDH	4	Unknown	737.8		
BHP	1997	Ferrobamba	Exploration	DDH	3	Unknown	365.8		
Pro Invest	2003	Ferrobamba	Exploration	DDH	4	HQ	738		
Xstrata	2005	Ferrobamba	Resource Evaluation	DDH	109	НQ	26,839.90		
	2006	Ferrobamba	Resource Evaluation	DDH	125	НQ	51,004.20		
	2007	Ferrobamba	Resource Evaluation	DDH	131	НQ	46,710.40		
	2008	Ferrobamba	Resource Evaluation	DDH	118	HQ	46,773.80		
	2010	Ferrobamba	Resource Evaluation	DDH	91	HQ	28,399.90		
MMG	2014	Ferrobamba	Resource Evaluation	DDH	23	HQ	12,609.70		
	2015	Ferrobamba	Resource Evaluation	DDH	154	HQ	53,771.70		
	2016	Ferrobamba	Resource Evaluation	DDH	114	HQ	31,206.20		
	2017	Ferrobamba	Resource Evaluation	DDH	27	HQ	17,793.35		
	2018	Ferrobamba	Resource Evaluation	DDH	83	HQ- NQ- BQ	48,062.70		
	2019	Ferrobamba	Resource Evaluation	DDH	91	HQ- NQ- BQ	29,690.70		
	2019	Ferrobamba	Resource Evaluation	RC	41	5 1/2	5,699.00		
		Ferrobamba Deeps	Exploration	RC	1	5.625	400.00		
		FerroDeeps	Exploration	DDH	1	HQ	464.80		
	2020	Ferrobamba	Resource Evaluation	DDH	7	HQ	1,427.65		
		Ferrobamba	Resource Evaluation	RC	37	5.625	5,107.00		
		FerroDeeps	Exploration	DDH/RC	10	HQ	3,622.85		
	2021	Ferrobamba	Resource Evaluation	DDH	24	HQ	7,875.85		
		Ferrobamba	Resource Evaluation	RC	73	5.625	12,100.00		
		FerroDeeps	Exploration	DDH/RC	27	HQ	16,841.05		
	2022	Ferrobamba	Resource Evaluation	DDH	49	HQ	8,946.45		
		Ferrobamba	Resource Evaluation	RC	137	5.625	22,385.00		

	• The porphyry style mineralisation occurs in quartz-monzonite to granodiorite rocks. The main economic hypogene minerals are bornite, chalcopyrite and molybdenite, with minor occurrence of supergene copper oxides and carbonates near surface. The intrusive rocks of the batholith in contact with the Ferrobamba limestones gave rise to contact metamorphism and, in certain locations, skarn (garnet, pyroxene and magnetite) bodies with Cu (Mo-Au-Ag) mineralisation.
Drillhole informatio n	 Drillhole information in Table 3 includes all the holes that extend below the base of the 2022 Ore Reserve pit. Azimuth and dips are given for the collars (COLLAR_AZ and COLLAR_DIP) and for the end of holes (EOH_AZ and EOH_DIP) as the deep holes generally experience significant deviation, and so that directional holes (which have a FEXXXX-XXX-01 suffix, for example FEEX20-001-01) can be approximately plotted.
Data aggregatio	 All reported intersections were determined by the presence of anonymously high Cu, generally greater than 0.2%Cu for a minimum of 8m length.
n methods	 All reported intersections are continuous, that is all samples are included in the length and grade calculations. Internal dilution however was considered and generally kept to a minimum of 8m of consecutive samples below 0.2% Cu.
	All intercepts are below the 2022 Ore Reserve pit shell.
	 No metal equivalents are used in the reporting of Exploration Results.
Relationsh ip	 No allowance has been undertaken regarding true widths for reporting Exploration Results. All reported intersection lengths and grade calculations are truly downhole.
between mineralisa tion width and intercepts lengths	 Drilling utilised for reporting the Exploration Results is commonly oblique to obtuse to the mineralisation trend and this should be considered when evaluating true mineralisation widths with respect to the reported intersections.

		deposit paragenesis, clay / talc sampling, and wall rock control of the skarn mineralisation. Recent work has focused on relogging and standardizing the logging database, in order to be able to model the intrusive units, limestone protoliths and master structures with greater accuracy and precision, to benefit resource estimation, geotechnical designs, metallurgical characterisation and blast hole modelling. Limestone protoliths are important for geotechnical characteristics, as inward dipping slopes on several walls have already caused structural failures.
Further work	•	Drilling programs are currently underway and planned to continue in 2024 are planned to infill and identify areas with proximal extensions to known mineralisation, and to target new areas that have not been drilled. Previous drilling programs were focussed on targeting high grade skarn mineralisation. It has now been recognised that there is economic potential for large tonnage, low-medium grade targets encompassing the lower grade halos surrounding the skarns and the extensive zones of intrusive-hosted stockwork mineralisation such as the Taquiruta zone in the south of the Ferrobamba deposit (Figure 3 and Figure 6). Studies have commenced to evaluate the mineralisation and determine potential mining methods, including the potential for expansion of the open pit and / or an underground development

ROSEBERY

Key Points

Drilling over the past 2 years at Rosebery has focused on in-mine resource extension and delineation of the Rosebery orebody. From the beginning of 2022 to end of April 2023, 165 exploration holes for 63,585m were drilled across the mine lease (28M/1993) within the mine footprint and on exploration licence (EL41/2010). An accelerated drilling program was planned in 2022 and commenced in January 2023 with the strategy to discover new mineralisation, both as extensions to the Rosebery lenses within the mining lease and within the exploration licence. Concurrent with studies on finding a sustainable long-term tailings storage solution, the overall objective is to extend the life of the Rosebery mine.

Exploration drilling has been completed at 18 prospects both within the immediate mine environs and on surrounding surface leases within the report period through a mix of underground and surface drilling. This work has resulted in several intersections including mine lens extensions (e.g., Z- lens and T- lens) and discovery of new mineralised zones (e.g., Oak & Bastyan). Current orebody knowledge demonstrates that the Rosebery orebody remains open to the north and south while prospectivity still exists within the mine footprint.

Significant intersections from the following targets have been received:

T- lens

٠	R13750	21.2m @ 9.5% Zn, 0.8% Pb, 23.1g/t Ag, 0.2g/t Au from 760m
		Inc. 10.2m @ 15% Zn, 1.5% Pb, 42g/t Ag, 0.2g/t Au from 771m

Z- lens

٠	R13670	7.2m @ 14.2% Zn, 8.9% Pb, 0.4% Cu, 152g/t Ag, 1.6g/t Au from 208m
	D12671	14m @ 2.7% 7n 2.2% Ph 0.1% Cu 0.0 m/t A a 0.1 m/t Au from 210m

• R13671 14m @ 3.7% Zn, 2.2% Pb, 0.1% Cu, 9.9g/t Ag, 0.1g/t Au from 218m

V-lens

- R13626 24m @ 9.3% Zn, 0.3% Pb, 0.2% Cu, 7g/t Ag, 1.1g/t Au from 72m
- R13653
 1.7m @ 22.9% Zn, 6.7% Pb, 0.5% Cu, 581g/t Ag, 3.3g/t Au from 48.4m
 25.4m @ 6.6% Zn, 2.8% Pb, 0.1% Cu, 111g/t Ag, 1.1g/t Au from 61.6m
 7.5m @ 10% Zn, 4.6% Pb, 0.2% Cu, 210g/t Ag, 0.9g/t Au from 104.5m

H-lens

• R13817 8m @ 5.3% Zn, 1.4% Pb, 0.1% Cu, 13.3g/t Ag, 0.1g/t Au from 221m

AB North

• 519R 5m @ 10.3% Zn, 4.7% Pb, 0.1% Cu, 136g/t Ag, 2.0g/t Au from 542m

Oak

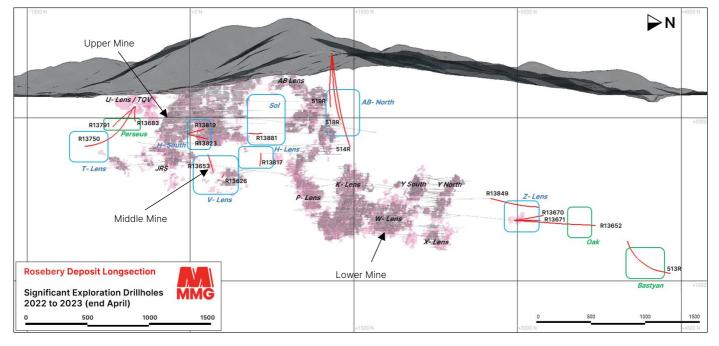
R13652
 4.56m @ 4.5 % Zn, 2.4 % Pb, 0.1 % Cu, 69.4 g/t Ag, 0.9 g/t Au from 630.4m
 Inc. 2m @ 6.7 % Zn, 3.6 % Pb, 0.1 % Cu, 92.5 g/t Ag, 1.3 g/t Au from 632m
 0.5m @ 4.6 % Zn, 1.9 % Pb, 0.2 % Cu, 100 g/t Ag, 0.83 g/t Au from 660.3m

Bastyan

513R 7m @ 10.1% Zn, 3.5% Pb, 0.02% Cu, 52.6g/t Ag, 0.04g/t Au from 2273.5m
 Inc. 2.5m @ 7.1% Pb, 96.3g/t Ag, 1.1% Zn from 2273.5m
 Inc. 2.0m @ 37.7% Zn, 0.5% Pb, 11g/t Ag from 2277.8m

Geology Summary

The Rosebery deposit is hosted by the upper Central Volcanic Complex (CVC) of the 250 km long, middle to late Cambrian Mt Read Volcanic Arc on the west coast of Tasmania. The host to the major Zn-Pb-Cu-Ag-Au mineralisation at Rosebery and Hercules are stratified, felsic sandstones that are derived from reworking of the voluminous footwall pumice breccia unit that is extensive throughout the Rosebery-Hercules area of the Mt Read Volcanics (Large et al., 1991). The host horizon is unconformably overlain by black shale and quartz-rich, rhyolitic pumiceous mass flow units of the White Spur Formation (Large et al., 2001). During the Devonian, shallow level post-tectonic granitoids intruded the mine area resulting in metamorphism and recrystallisation of the southern ore lenses (Zaw et al., 1999).


Exploration and resource drilling at Rosebery, carried out over the past 30 years, has led to the segregation of the Rosebery orebodies into numerous lenses that are broadly grouped into the Upper, Middle and Lower Mine areas. The Lower Mine hosts the high-grade P- and K- lenses and commonly contains barite-rich zones, black slate and quartz-feldspar porphyry. In contrast, these features are largely absent in the high-grade areas of the Middle Mine where certain lenses are characterised by more abundant chalcopyrite-magnetite-pyrrhotite (+tourmaline-fluorite). This is interpreted to represent a metasomatic overprint of the massive sulphide lenses by later Devonian granitoids (Zaw et al., 1999).

Drilling Programs

The drilling program in 2022 focussed on the extension around known lenses and applying new orebody knowledge in the drilling of high-ranking targets within the mine footprint from available underground development. Drilling has defined and extended several lenses including U-, V-, P- and Z- lens. Portions of these lenses were subsequently infill drilled. Other drilling aimed to test the connection between J- and T- lens, to the north of AB- lens, K- Hangingwall and H- lens. Most of the programs were successful, however the most significant intercepts have been generated outbound of the deposit such as south of T- lens, north of Z- lens and to the south of P- lens in the centre of the deposit (**Figure 7**).

To support the Life Extension Project currently underway at Rosebery, a budget of A\$25M was approved for drilling in 2023. The project aims to extend the Rosebery orebody with 5 underground diamond drill rigs and explore new opportunities on MMG land holdings with 3 surface rigs, for a total of 129,000m; the largest drill program to be completed at Rosebery.

The underground drilling is targeting extensions to the south and north of the deposit as discussed above but also at U- and AB- lenses. Additionally, in-mine hangingwall opportunities are being tested that are situated around the established K- and P- lenses. Surface drilling in 2023 is focused on testing new orebody knowledge concepts across the mining lease and exploration licence particularly adjacent the historical Hercules and Jupiter mines but also advanced prospects such as South Hercules and Snake Gully (**Figure 8**).

Figure 7. Longsection of Rosebery deposit (viewing west – Rosebery Mine Grid) showing >6% Zn lenses (pink polygons) dipping to the east under Mt Black, all mine voids (grey polygons) and significant exploration drillholes. The major targets are determined as either Rosebery extensions (blue) or those located west of the Rosebery Fault in the Dundas Group (green).

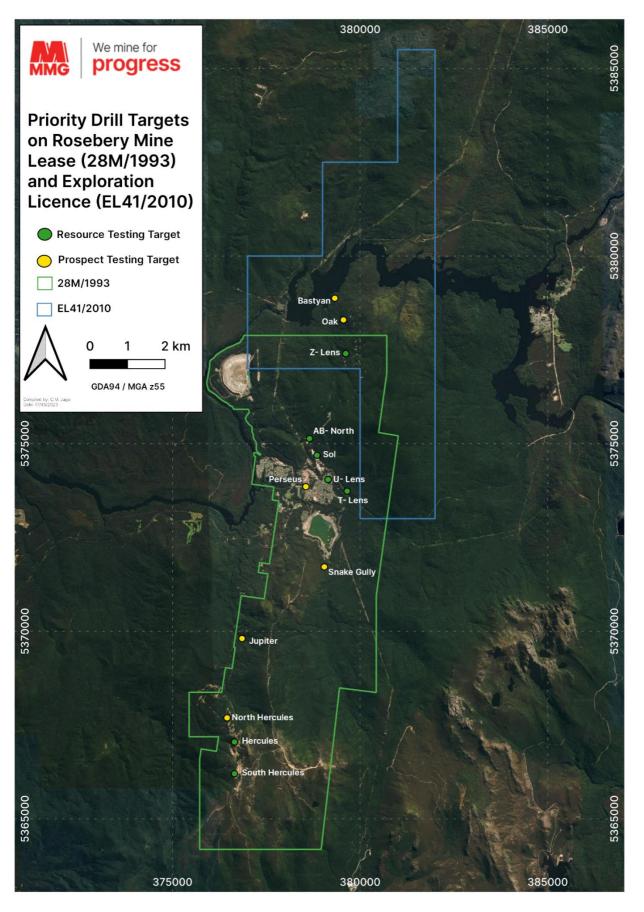


Figure 8. Location map of priority targets across 28M/1993 and EL41/2010.

Z-lens

Underground drilling of the northern most massive sulphide occurrence, Z- lens, commenced in 2021 from the 52Y exploration drive (EXD). Drilling focused around historical surface drilling which returned significant results that are captured within the 2022 Mineral Resource and Ore Reserve. The Z-lens Mineral Resource was increased by 440kt at grades of 5.7% Zn, 2.8% Pb, 0.13% Cu, 120g/t Ag and 1.4g/t Au. During 2022, the 200m 52Y EXD extension was approved to the north, but prior to exiting the EXD, three holes were drilled to the north of Z- lens to determine mineralisation continuity. Two of the three holes intersected varying mineralisation intensity around 125m north of the currently modelled extents of Z- lens. Intercept highlights include:

- R13670 7.2m @ 14.2% Zn, 8.9% Pb, 0.4% Cu, 152g/t Ag, 1.6g/t Au from 208m (2.5m true width)
- R13671 14m @ 3.7% Zn, 2.2% Pb, 0.1% Cu, 9.9g/t Ag, 0.1g/t Au from 218m (2.7m true width)

Drilling has taken place in Q1 2023 from 44Y EXD testing the up-dip extensions of Z- lens. A wide interval of stringer to semimassive sulphide was intersected in R13849, 130m up-dip of the currently modelled Z- lens. Sphalerite and galena are visible from 448-473m with pink manganoan carbonates which is indicative of the mineralisation currently mined at Y- North, Y- South and X- lens. Assays are pending and drilling from the 44Y EXD will continue through 2023.

T-lens

In late 2022, R13750 was drilled from the 11L EXD to test the downdip extensions of U- lens. It was determined that by extending the hole, T- lens could be intersected based on the stacked nature of the Rosebery massive sulphide ore lenses. The hole intersected variable sulphide with replacement magnetite-pyrrhotite-pyrite and hematite. At 760m, R13750 intersected a zone of semi-massive to massive sphalerite-galena-pyrite which returned:

 R13750 21.2m @ 9.5% Zn, 0.8% Pb, 0.2g/t Au, 23.1g/t Ag from 760m (11.5m true width) Inc. 10.2m @ 15% Zn, 1.5% Pb, 0.2g/t Au, 42g/t Ag from 771m

The lower precious metal tenor is unlike typical Rosebery-style mineralisation but can be attributed to the Devonian granitoid overprint and subsequent remobilisation at the south end of the Rosebery deposit (Zaw et al., 1999).

A follow up hole was drilled 100m south of R13750 which intersected 12m of massive magnetite with banded to stringer pyrite and minor chalcopyrite from 768m. Assays are pending but orebody knowledge studies continue to understand the extensions of T- lens and additional resources to the south of the Rosebery deposit.

V-lens

Extension drilling at V- lens has been ongoing since 2020. New areas have been defined and are reported in previous Public Reports of Mineral Resource Estimates. The V-lens Mineral Resource was increased by 570kt at grades of 3.4% Zn, 1.6% Pb, 0.36% Cu, 47g/t Ag and 1.4g/t Au. Drilling from 2022 has focussed on testing two stacked mineralised zones at V- lens. Intercepts are generally "Rosebery-polymetallic" but instances of overprinted sulphide like T- lens is apparent. Significant results from 2022 include:

- R13626 24m @ 9.3% Zn, 0.3% Pb, 0.2% Cu, 7g/t Ag, 1.1g/t Au from 72m (16.6m true width)
- R13653
 1.7m @ 22.9% Zn, 6.7% Pb, 0.5% Cu, 581g/t Ag, 3.3g/t Au from 48.4m (1.2m true width)
- 25.4m @ 6.6% Zn, 2.8% Pb, 0.1% Cu, 111g/t Ag, 1.1g/t Au from 61.6m (18.3m true width) 7.5m @ 10% Zn, 4.6% Pb, 0.2% Cu, 210g/t Ag, 0.9g/t Au from 104.5m (5.5m true width)

H-lens

Drilling from 2021 into 2022 determined that high-grade extensions to the south of P- lens were present along with a hangingwall target of H- lens. From the 24B EXD drill drive, delineation drilling tested the south extension of P- lens and the hangingwall H- lens with holes extended to intersect both targets. Drilling to the south of the 24B EXD continues in 2023 with extensions to mineralisation evident. Significant assay results include:

• R13817 8m @ 5.3% Zn, 1.4% Pb, 0.1% Cu, 13.3g/t Ag, 0.1g/t Au from 221m (4.3 true width)

H- South

During Q1 2023, drilling commenced in the 17L Pump Station to test a gap in the high-grade wireframe in the south of H- lens. Initial drilling returned significant results of:

• R13819 intersected 3m of massive sulphide, predominantly pyrite with orange to pale-yellow sphalerite from 203m (Figure 9). Brecciated and quartz stockwork veined zones with chalcopyrite, pyrite and sphalerite infill occurs from 206 to EOH of 221m. Assays Pending.

- R13823 intersected pyrite stringer mineralisation from 161m to 227m with sphalerite visible from 223m. Chalcopyrite stringers occur from 177.1m to 189.3m, with semi-massive chalcopyrite from 188.1m to 189m (**Figure 10**). Assays Pending.
- Drilling in the 17L will recommence later in 2023.

Figure 9. Massive sulphide mineralisation intersected in R13819 at the H- South target.

Figure 10. Significant chalcopyrite intersected at the H- South target in R13823.

Sol

Sol is the name given to the area between the Upper Mine lenses and AB- lens (Figure 7). High-grade historical intercepts are observed around the margins of the high-grade wireframe but there is limited information to incorporate these intercepts into

an Inferred Resource. Due to the age of mining in the Upper Mine, any new drilling needs to be carried out from surface which is expected to occur in 2023 and 2024.

However, drilling the lower portion of Sol could be achieved from underground, and this commenced in April 2023. Drillhole R13881 intersected 1.9m of massive barite with pale-yellow, low-Fe sphalerite, galena and pyrite from 170.1m (**Figure 11**) which occurs 50m north of the known orebody (historical H- lens stoping). Due to the presence of the low-Fe sphalerite and galena, it is expected that the assays will return with high precious metal contents. A second zone of barite-hematite-pyrite occurs 6m prior occurs at 163.9m extending 2.1m. Assays are pending for R13881.

A further phase of underground drilling is planned for later in Q2 2023 which will complement the surface drilling also due to commence during this time.

Figure 11. Multiple intersections in R13881 from the Sol target.

AB North

Surface drilling has focussed on the area immediately north of AB- lens with the first drillhole, 514R, intersecting host 150m north of the known orebody. The hole intersected a 20m wide zone of weak disseminated sphalerite mineralisation, with areas of stringer mineralisation within silica-white mica-chlorite altered volcaniclastic sandstone (Rosebery host rock). A follow-up hole, 518R intersected 0.5m of massive sulphide 120m north of known mineralisation which prompted the design of 519R.

Located 60m north of known mineralisation, between 541.4m and 546.3m downhole, 519R intersected semi-massive to massive sulphide resembling typical Rosebery polymetallic mineralisation. Significant assay results include:

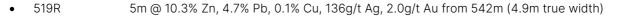


Figure 12. Polymetallic mineralisation intersected in 519R at the AB- North target, 60m north of known mineralisation.

Jupiter

From Q3-2022, two surface holes were drilled underneath the Jupiter mine, where massive sulphide was mined historically. The first hole, JP389, targeted 300m below previous drilling and intersected a 70m wide zone of pyrite stringer mineralisation with trace chalcopyrite from 711m. The daughter hole, JP389-D1 drilled above the parent hole and intersected weakly disseminated sphalerite mineralisation was intersected over 18m from 721m within a chlorite altered host-like volcaniclastic sandstone unit. Assays are pending.

Shallow drilling around the previous stoping areas and massive sulphide will be drilled later in 2023. Further gossan targets 150m northeast and Cu targets to the south of Jupiter are being reviewed for drilling in 2024.

A research project commenced in mid-2022 using hyperspectral scanning technologies (HyLogger), low-detection multielement geochemistry (ME-MS61), scanning electron microscopy (SEM) and graphical logging to understand the stratigraphy, alteration and mineralisation characteristics of the Jupiter mineral system. Orebody knowledge outcomes from the research will have a direct influence on the drilling in subsequent years.

TQV

During the Devonian, the massive sulphide lenses at Rosebery become increasingly overprinted by the granitoid south of the deposit. Evidence of the influence of the granitoid include variable replacement by magnetite-pyrrhotite-pyrite with gangue fluorite-chlorite-tourmaline-garnet (Zaw et al., 1999). In 2022, it was recognised that high-grade Au mineralisation occurs within tourmaline-quartz-pyrite veins and breccias in the hangingwall of U- lens. The name of this target is drawn from this association with tourmaline quartz veins (TQV). Generally, the thickness of the mineralised interval is less than 1m, but R13488 remains the thickest of the intercepts to date:

• 15.8m @ 6.2g/t Au, 0.3% Cu, 9.3g/t Ag from 168m

Since this recognition, holes that are drilled into U- lens are extended to the TQV horizon. Ongoing orebody knowledge studies are underway to determine the significance of the mineralisation style particularly in the shallow part of the mine.

Oak

The Oak prospect is located 500m north of Z- lens on EL41/2010 and was discovered in 2011 with subsequent exploration to 2013. In 2022, R13652 was the first hole designed to test the Oak prospect from underground. Whilst R13652 was not drilled at an optimal angle, it was deemed the hole would provide valuable information ahead of the 200m extension to the 52Y EXD later in 2022. The hole was drilled to 753.1m and intersected the now-prospective Dundas Group to the west of the Rosebery Fault from 268.9m. The true thickness of the intervals is currently unknown.

R13652 has returned two intervals of mineralisation:

- 4.56m @ 4.5 % Zn, 2,4 % Pb, 0.1 % Cu, 69.4 g/t Ag, 0.9 g/t Au from 630.44m
- Inc. 2m @ 6.7 % Zn, 3.6 % Pb, 0.1 % Cu, 92.5 g/t Ag, 1.3 g/t Au from 632m
- 0.5m @ 4.6 % Zn, 1.9 % Pb, 0.2 % Cu, 100 g/t Ag, 0.83 g/t Au from 660.3m

Overall, a broad zone of elevated mineralisation is observed around the intercept above:

• 32.8m @ 1.2 % Zn, 0.5 % Pb, 0.05 % Cu, 19.2 g/t Ag, 0.3 g/t Au from 628m

The northern extensions of Oak are currently being drilled from surface while the southern extents will be drilled from the 52Y EXD in Q2 2023. The Oak Prospect represents a significant exploration target for further mineralisation with the Dundas Group to the west of the Rosebery Fault.

Perseus

A stratigraphic hole was drilled to the west of the Rosebery Fault from the 11L EXD in Q3 2022 to a depth of 971.8m. The aim for R13638 was to gain an understanding of the Dundas Group geology to the west of the mine 4.5km south of the Oak prospect. Minor chalcopyrite was intersected with tourmaline-quartz-fluorite veining in the Rosebery Fault. A thin 40cm band of sphalerite and galena was intersected at 446m within a pumiceous rhyolitic unit while irregular sulphide clasts (to 2 cm) are hosted in a volcaniclastic mass flow unit directly above this band. Three holes were drilled around this intercept with pyrite observed at the same horizon.

A second stratigraphic hole (R13791) was drilled further south to understand the Dundas Group in more detail. Abundant pyrite was seen in volcaniclastic sandstone and breccia units intercalated with black shales and is an indication of hydrothermal processes taking place. Detailed geological interpretation of the Perseus target is continuing.

Bastyan

During 2021, 513R was drilled to test the northern extensions of the Oak prospect. The hole intersected massive sulphide in the Dundas Group on EL41/2010 600m north of Oak. Results returned:

7m @ 10.1% Zn, 3.5% Pb, 0.02% Cu, 52.6g/t Ag, 0.04g/t Au from 2273.5m
 Inc. 2.5m @ 7.1% Pb, 96.3g/t Ag, 1.1% Zn from 2273.5m
 Inc. 2.0m @ 37.7% Zn, 0.5% Pb, 11g/t Ag from 2277.8m

Follow up drilling of Bastyan is scheduled for late-2023.

Forward Program

Underground diamond drilling is continually active in several areas of the mine with the intent to better define known mineralised areas (Mineral Resource to Ore Reserve conversion) as well as to further extend the Mineral Resource into areas potentially hosting additional economic mineralisation.

Surface Drilling is planned for the following targets in 2023 and 2024:

- North Hercules
- Hercules
- South Hercules
- Jupiter
- Sol
- Snake Gully
- AB- North
- Oak
- Bastyan

References

Large, R.R., 1992, 'Australian volcanic-hosted massive sulfide deposits: features, styles, and genetic models', Economic Geology, vol. 87, no. 3, pp. 471-510, doi: <u>https://doi.org/10.2113/gsecongeo.87.3.471</u>.

Large, R.R., Allen, R.L., Blake, M.D. and Herrmann, W., 2001, 'Hydrothermal Alteration and Volatile Element Halos for the Rosebery K Lens Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania', Economic Geology, vol. 96, no. 5, pp. 1055-1072, doi: <u>https://doi.org/10.2113/96.5.1055</u>.

Zaw, K., Huston, D.L. and Large, R.R., 1999, 'A Chemical Model for the Devonian Remobilization Process in the Cambrian Volcanic-Hosted Massive Sulfide Rosebery Deposit, Western Tasmania', Economic Geology, vol. 94, no. 4, pp. 529-546.

Statement of Compliance with JORC Code Reporting Criteria and Consent to Release

This report has been compiled in accordance with the guidelines defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("2012 JORC Code").

Competent Person Statement

I, Rex Berthelsen, confirm that I am the Competent Person for the Exploration Results section of this Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Fellow of The Australasian Institute of Mining and Metallurgy
- I have reviewed the relevant Exploration results sections of this Report to which this Consent Statement applies.

I am a full-time employee of MMG Ltd. at the time of the report of exploration results.

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Exploration Results sections of this Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to the Exploration Results.

Competent Person Consent

Pursuant to the requirements Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

With respect to the sections of this report for which I am responsible –I consent to the release of the Exploration results as presented in this report:

Date:

This signature was scanned for the exclusive use in this document – the *MMG Rosebery Exploration update as at 30 June 2023* – with the author's approval. Any other use is not authorised.

Rex Berthelsen HonFAusIMM(CP)(#109561)

13/07/2023

Signature of Witness:

This signature was scanned for the exclusive use in this document – the *MMG Rosebery Exploration update as at 23 June 2023* – with the author's approval. Any other use is not authorised. Witness Name and Residence: (e.g. town/suburb)

Jarod Esam, Melbourne, Australia

Appendix 3 – Drillhole Tables

Table 4 - Summary of Significant Downhole Intercepts

Target	Hole ID	From (m)	To (m)	True Thickness (m)	Zn (%)	Pb (%)	Au (g/t)	Ag (g/t)	Cu (%)
T long	R13750	760	781.2	11.2	9.5	0.8	0.2	23.1	0.07
T- lens	Inc.	771	781.2	5.5	15	1.5	0.2	41.8	0.04
7 Jana	R13670	208	215.2	2.5	14.2	8.9	1.6	152	0.4
Z- lens	R13671	218	232	2.7	3.7	2.2	0.1	9.9	0.1
	R13626	72	96	16.6	9.3	0.3	1.1	7	0.2
V lana		48.4	50.1	1.2	22.9	6.7	3.3	581	0.5
V- lens	R13653	61.6	87	18.3	6.6	2.8	1.1	111	0.1
		104.5	112	5.5	10.0	4.6	0.9	210	0.2
H- lens	R13817	221	229	4.3	5.3	1.4	0.1	13.3	0.1
AB North	519R	542	547	4.9	10.3	4.7	2.0	136	0.1
	R13652	630.44	635	4.56	4.5	2.4	0.9	69.4	0.1
Oak	Inc.	632	634	2	6.7	3.6	1.3	92.5	0.1
		660.3	660.8	0.5	4.6	1.9	0.83	100	0.2
	513R	2273.5	2280.5	7	10.1	3.5	0.04	52.6	0.02
Bastyan	Inc.	2273.5	2276	2.5	1.1	7.1	0.03	96.3	0.03
	Inc.	2277.8	2279.8	2.0	37.7	0.5	0.07	11	0.02
TOV	R13488	168	183.8	15.8	0.04	0.02	6.2	9.3	0.3
TQV	Inc.	178	180	2	0.05	0.03	20.3	24.5	1.1

Note: NSI = no significant intersection

Table 5 - Collar Locations

Target	Hole ID	East	North	Elevation	East	North	Elevation	Collar	Collar	EOH
Ŭ		GDA94z55	GDA94z55		(m)	(m)	(m)	Azi	Dip	Depth
					Local	Local	. ,	Local	•	•
T- lens	R13750	379111.5	5373857.59	53.54	27.58	-552.59	3103.03	118.1	-45.27	833.5
Z- lens	R13670	379664.98	5377529.88	-989.41	1290.38	2970.76	2060.08	9.32	7.82	281.7
Z- lens	R13671	379665.0	5377529.87	-989.56	1290.4	2970.75	-989.56	16.4	-1.35	255
V- lens	R13626	379719.89	5374524.34	-555.79	813.82	306.35	2493.7	93.5	-15.86	290
V- lens	R13653	379722.57	5374725.39	-549.18	796.23	209.6	2500.89	146.8	-72.84	179.3
H- lens	R13817	379435.92	5375112.86	-374.2	591.74	645.21	2674.94	90	-27.2	284.6
Oak	R13652	379664.72	5377529.25	-989.49	1289.17	2970.29	2058.77	349	-2.38	753.1
Bastyan	513R	379977.27	538622.59	354.3	1810.9	3981.3	3403.79	80.4	-88	2432.9
TQV	R13488	379085.64	5374119.23	49.01	53.84	-259.57	3098.55	83.5	-24.79	214.7
AB- North	514R	379128.1	5375717.6	545.3	418.9	1297.6	3594.8	282.97	-63.56	1044.4
AB- North	518R	379138.51	5375718.77	545.3	418.94	1297.6	3594.8	260.3	-74	750.6
AB- North	519R	379138.51	5375718.77	545.3	418.94	1297.6	3594.8	262.0	-61	636.6
Jupiter	JP389	377639.15	5369931.43	650	-2186.25	-4084.81	3699.49	270	-75.3	1480.9
Jupiter	JP389- D1	377639.15	5369931.43	650	-2186.25	-4084.81	3699.49	270	-75.3	1049.4
Perseus	R13638	379102.22	5373874.39	55.62	21.74	-504.53	3105.11	264.79	-18	971.8
Perseus	R13791	379102.29	5373874.7	54.72	21.99	-504.58	3104.21	230.04	-24.91	1001.4
H- South	R13819	379581.97	5374449.26	-195.83	605.01	-34.5	2853.66	317.64	11.37	221.0
H- South	R13823	379582.25	5374449.41	-196.41	605.32	-34.41	2853.08	330.91	-12.45	240
Sol	R13881	379234.26	5375084.12	-190.57	388.43	656.35	2858.92	121.39	-3.39	239.2

Appendix 4 - JORC 2012 Table 1 – Rosebery Exploration Activities

The following information complies with the 2012 JORC Code requirements specified by "Table-1 Section 1-2" of the Code.

JORC 2012 Code Table 1 Assessment and Reporting Criteria for Rosebery Exploration Activity 2022-2023

	Section 1 Sampling Techniques and Data
Criteria	Commentary
Sampling techniques	 All samples included in this Public Report of Exploration results are from diamond drill core. The standard sampling length is 1m with a minimum of 0.4m and maximum of 1.5m. Samples are half core split, crushed and pulverised to produce a pulp sample (>85% passing 75µm).
	• Diamond drill core is selected by geologists relative to geological contacts, then marked and assigned a sample number prior to sampling. Sample details and hole ID's are stored in a database for correlation with laboratory assay results.
	• There are no inherent sampling problems recognised. The sampling techniques applied to Rosebery drill core are considered appropriate for the style of mineralisation.
Drilling techniques	• The drilling type is diamond core drilling for both underground and surface using wireline drilling techniques with sizes including NQ2, NQ3, HQ, PQ sized core.
teeninques	 From 2021 all underground drill holes are orientated using a Boart Longyear TruCore[®] orientation system.
Drill sample	Diamond drill core recoveries average 97%. Drill crews mark and define lost core intervals with blocks. Sample recovery is measured and recorded in the drill hole database.
recovery	• The drilling process is controlled by the drill crew and geological supervision provides support for maximising sample recovery and ensuring appropriate core presentation. No other measures are taken to maximise core recovery.
	There is no demonstrative correlation between recovery and grade.
	• Preferential loss/gain of fine or coarse material is not significant and does not result in sample bias. However, broken ground is typically encountered at geological contacts away from mineralisation or close to footwall/hanging wall rather than within mineralised zones.
	Any core loss that occurs in a target zone incurs a re-drill.
Logging	All diamond drill core has been geologically logged by geologists to support Mineral Resource estimation as well as mining and metallurgy studies. Geotechnical logging is limited to RQD measurements (rock quality designation).
	 Geological logging is mostly qualitative, focusing on classifying stratigraphy, lithology and alteration but quantitative data is also captured, for example mineral percentages and structural measurements.
	• The total length of drill holes is geologically logged and entered directly into the database using laptop computers.
	Core photography records are comprehensive from 2013 to present but core photos for historic drilling are sporadic, incomplete or lost.

53 /5/	53	/	57	
---------------	----	---	----	--

Section 1 Sampling Techniques and Data				
Criteria	Commentary			
Sub-sampling techniques and sample preparation	 From 2018, samples are being processed in the following manner: Dried, primary crushed to 6mm then secondary crushed to 3mm then pulverised to 85% passing 75µm. Sizing analysis is carried out on pulps at a rate of 1:20. Samples are generally not split prior to pulverisation provided they weigh less than 3.5kg. The resulting pulps are bagged, labelled and boxed for despatch to ALS Brisbane and ALS Townsville. 			
	 From late 2019, whole core was sampled for selected infill drilling (less than 30m spacing). Exploration and Resource Testing (60m spacing) drilling continued to be half core sampled, as well as drilling in areas of known complex geology. Whole core sampling is conducted with approval from Mineral Resources Tasmania (MRT) to assist with the lack of core storage space available at Rosebery. 			
	 Disposal of non-sampled sections only occurs after verification of laboratory results and after consultation with the Competent Person, Senior Resource Geologist and Senior Mine Geologist. 			
	• Sample representivity is checked by sizing analysis and field duplicates at the crush stage.			
	 The sample types, nature, quality and sample preparation techniques are considered appropriate for the style of the Rosebery mineralisation. 			
Quality of assay data and	 Analyses are performed by ALS Brisbane and ALS Townsville for Rosebery core samples. The nature of the analyses are as follows: 			
laboratory tests	 Analysis of Ag, Zn, Pb, Cu and Fe by four acid ore grade digests, ICPAES finish with extended upper reporting limits (ALS Brisbane). In addition to these main elements, another 29 elements are reported as a part of this method. Analysis of Au by fire assay, three acid digest and flame assay AAS (30g sub-sample charge) (ALS Townsville). The following items are included in all sample batches to assess the quality and precision of laboratory results: 			
	 Matrix-matched (CRM) or OREAS certified standards and field duplicates are inserted at a ratio of 1:20 to routine samples and dolerite blanks at a ratio of 1:50. Duplicates are taken as either coarse crush or pulp repeats. CRM standards (LBM-20, MBM-20 and HBM-20) were routinely used from early 2020, replacing the "18" series matrix-matched standards. All standards are photographed with their sample bags and ID's at the time of sampling to verify laboratory results and ensure sample lists are in the correct order. Quartz flushes are inserted immediately after high grade sample groups to check laboratory crush and pulverisation performance. ALS Brisbane and Townsville report QAQC data to MMG for analysis of internal ALS standard performance. The performance of ALS internal standards appears to be satisfactory. 			
	 Batches that fail quality control criteria (such as standards reporting outside set limits) are entirely re-assayed. 			
	 An umpire laboratory (Intertek Perth) is used to re-assay 5% of ore-grade pulps returned from the ALS laboratory. Analysis of routine sample results and control sample performance is reported quarterly. 			
	 No data from geophysical tools, spectrometers or handheld XRF instruments have been used in estimation of the Mineral Resource. 			
	The above methods are considered effectively total digestion.			
Verification of sampling and	 All mineralised intersections are reviewed and verified by numerous geologists by comparing assay results to core photos and logging. 			
assaying	 Intentional twinning of mineralised intersections has occurred only in select cases where confirmation of historical drilling results was required, for example where old drillhole traces could have been affected by magnetics. In 2020, a drill program aiming to twin 5% of historic drillholes in the Middle Mine area was completed to verify previous assay results and confirm spatial location of mineralised intersections. No twinned holes have been completed that relate to this Public Report of Exploration results. 			

	Section 1 Sampling Techniques and Data
Criteria	Commentary
	 Unintentional close spaced drilling can occur from underground drill patterns due to rapic changes in lithological competencies, but generally follow-up drilling is completed to achieve the appropriate drill spacing needed to support Mineral Resource estimation.
	 Lab results are received as batches (a batch per drillhole) and imported into the database by geologists. The performance of duplicates, blanks and standards is assessed for each batch by Project and Senior Geologists. Batches with failed standards are flagged and re-assay is requested for relevant sample sets.
	 Returned re-assayed data is reviewed to determine which batch is to be used "best data' exports. Batch status is recorded in the database for audit purposes.
	 Database validation algorithms are run to check data integrity before being used for interpretation and Mineral Resource estimation. Unreliable data (e.g., unverifiable assay data) is permanently flagged in the database and excluded from data exports.
	• Below detection limit results are replaced by half detection limit values for exports and use.
	No adjustments have been made to assay data
Location of data points	 Drillhole collars are surveyed by licenced Mine Surveyors. Geologists request underground dril sites to be marked up with a collar pin drilled into the wall at the drill site coordinates. After a hole is drilled, the collar point is tagged with a metal label (of its hole ID).
	 Collar positions of underground drillholes are picked up by surveyors using Leica TS16, TS15 and MS60 total stations. Collar positions of surface drillholes are picked up using differentia GPS. Historic surface drillhole collars were surveyed using a theodolite or handheld GPS but many of those collars have been resurveyed and updated in the drillhole database.
	 Diamond drillers align drill rigs underground and on surface using a Downhole Surveys DeviAligner tool to setup on drillhole orientations, as directed by geologists.
	 Since March 2018, north seeking gyro tools (Reflex Gyro Sprint-IQ and Axis Champ Gyro) have permanently replaced all other downhole survey instruments underground, because they are unaffected by magnetics, quick to use and highly accurate. Selected historic surface exploration drillholes have been surveyed using a Stockholm Precision Tools Gyro Tracer north seeking gyro (parent holes only).
	 The coordinate system used is referred to as the Cartesian Rosebery Mine Grid, offset from Magnetic North by 23°52'47" (as at 1 July 2020) with mine grid origin at MGA94 E=378981.981 N=5374364.125; mine grid relative level (RL) equals AHD+1.490m+3048.000m and is based on the surface datum point Z110.
	 Topographic data derived from LIDAR overflights have been carried out and correlated with surface field checks to confirm relativity to MGA and Rosebery Mine Grid.
Data spacing and distribution	 The Rosebery mineralised zones are drilled on variable spacing dependent on lens characteristics and safe access to drill platforms. Drill density ranges from 10-25m to 40-60m along strike and up and down dip of mineralised zones.
	 Wider spaced drilling exists in various areas of the deposit but is only adequate for establishing geological continuity, not defining grade continuity.
	 Core samples are not composited prior to being sent to the laboratory, however, the nomina sample length is generally 1m.
	 Observations of small-scale mineralisation geometry and structural characteristics were traditionally made by manual geological mapping, scanning and digitising to establish geological continuity.
Orientation of data in relation to geological structure	 Drilling orientation is designed perpendicular to lens strike, typically in the form of radial fans Mineralised lenses of the Rosebery deposit strike roughly north-south and dip east (45° or average). Fans are generally drilled from footwall drives (from west to east). Alternatively some holes are drilled from hanging wall drives (from east to west).
	 Drill fan spacing and orientation is designed to provide evenly spaced, high angle intercepts of the mineralised zones where possible, aiming to minimise sampling bias related to intersectior

	Section 1 Sampling Techniques and Data				
Criteria	Commentary				
	orientation. Some drill intersections are at low angle to the dipping mineralisation due to limitations of available drill platforms.				
	• Where historic drillholes from surface or older holes longer than 400m exist, attempts may be made to confirm mineralised intercepts by repeat drilling from newly developed drives. Deep drill intersections are excluded from Mineral Resources modelling where duplicated by new underground drillholes.				
	Drilling orientation is not considered to have introduced any sampling bias.				
Sample security	• Personnel involved in sample preparation are adequately trained and supervised. Samples are stored in a locked compound with restricted access during preparation and storage.				
	• Whole and half core samples for despatch to ALS Burnie are stored in sealed containers with security personnel at the Rosebery Mine entry gate overseeing collection by ALS couriers.				
	 Receipt of samples are acknowledged by ALS via email and checked against expected submission lists. 				
	• Assay data is returned via email as .sif files for direct importation to the drillhole database and archived online as a backup.				
Audit and reviews	• Regular site audits of the ALS Burnie, ALS Brisbane and ALS Townsville facilities are undertaken by MMG representatives.				
	• An increase in dust at the Burnie Lab where samples are prepared was noted during an audit in late 2020, posing a minor risk to sample cross contamination and to sample preparation staff. ALS Burnie have addressed this issue by building a new sample preparation shed with an appropriate dust extraction system.				
	• Any issues identified during audits and reviews in the past have been rectified.				

Section 2 Reporting of Exploration Results		
Criteria	Commentary	
Mineral tenement and land tenure status	 Rosebery Mine Lease ML 28M/1993 includes the Rosebery, Hercules and South Hercules polymetallic mines. It covers an area of 4,906ha. 	
	 ML28M/93 was granted to Pasminco Australia Limited by the State Government of Tasmania in May 1994. This lease represents the consolidation of 32 individual leases that previously covered the same area. 	
	• Tenure is held by MMG Australia Ltd for 30 years from 1 May 1994. The lease expiry date is 1 May 2024. A renewal process has commenced in line with MRT processes.	
	 The consolidated current mine lease includes two leases: (consolidated mining leases 32M/89 and 33M/89). These were explored in a joint venture with AngloGold Australia under the Rosebery Extension Joint Venture Heads of Agreement. This agreement covered two areas, one at the northern and one at the southern end of the Rosebery Mine Lease, covering a total of 16.07km². 	
	• There are no known impediments to operating in the area.	
Exploration done by other parties	 Tom McDonald discovered the first indication of mineralisation in 1893 when he traced alluvial gold and zinc-lead sulphide boulders up Rosebery Creek. Twelve months later an expedition led by Tom McDonald discovered the main lode through trenching operations, on what is now the 4 Level open cut. 	
	• The Rosebery deposit was operated by several different entities until 1921 when the Electrolytic Zinc Company purchased both the Rosebery and Hercules Mines.	
	• Drilling from surface and underground over time by current and previous owners has supported the discovery and delineation of mineralised lenses at Rosebery.	

56 / 5	57
--------	----

Section 2 Reporting of Exploration Results		
Criteria	Commentary	
Geology	The Rosebery volcanic-hosted massive sulphide (VHMS) deposit is hosted within the world- class Mt Read Volcanics. This Cambrian volcanic belt is an assemblage of lavas, volcaniclastics and sediments deposited in the Dundas Trough between the Proterozoic Rocky Cape Group and the Tyennan Block.	
	 Mineralisation occurs as stacked stratabound massive to semi-massive base metal sulphide lenses. The host lithology lies between the Rosebery Thrust Fault and the Mt Black Thrust Fault which all dip approximately 45° east. Ore mineralogy consists predominantly of sphalerite, galena, chalcopyrite with electrum and minor tetrahedrite. 	
	• The orebody has experienced numerous events of folding, shearing and thrusting particularly in the late Cambrian and early Devonian. Lenses in the southern portions of the deposit have experienced metasomatism and replacement by a deep Devonian granitoid resulting in variation of the mineralogy, structure, and alteration in these lenses.	
Drillhole information	The Rosebery drillhole database consists of 15,770 diamond drillholes providing over 567,000 samples.	
	• Table 2 outlines the following drillhole information from the 2022 and completed to date 2023 drill programs:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
Data aggregation methods	 Reported drill hole intercepts are length weighted averages. The minimum threshold for selecting reportable intersections is 1% Zn, or 0.5% Pb. For precious metal only intercepts, cut-off's of 0.5g/t Au or 20g/t Ag are used. Max internal dilution included below threshold is 3m 	
	Metal equivalents are not used in this report.	
Relationship between mineralisation width and intercept lengths	Mineralisation true widths are defined by modelled 3D wireframes based on mineralised intercepts.	
	• Typical drilling angles, relative to the geometry of mineralisation, are sub-perpendicular to perpendicular allowing true width of mineralisation to be determined. Most drillholes intersect the ore zone at angles between 40° and 90°.	
	• True widths are listed for each intersection in Table 4 of Appendix 1.	
Diagrams	• Figure 7 - Longsection of Rosebery deposit (viewing west – Rosebery Mine Grid) showing >6% Zn lenses (pink polygons) dipping to the east under Mt Black, all mine voids (grey polygons) and significant exploration drillholes. The major targets are determined as either Rosebery extensions (blue) or those located west of the Rosebery Fault in the Dundas Group (green).	
	• Figure 8 - Location map of priority targets across 28M/1993 and EL41/2010.	
	• Figure 9 : Massive sulphide mineralisation intersected in R13819 at the H- South target.	
	• Figure 10 : Significant chalcopyrite intersected at the H- South target in R13823.	
	• Figure 11 : Multiple intersections in R13881 from the Sol target.	
	• Figure 6: Polymetallic mineralisation intersected in 519R at the AB- North target, 60m north of known mineralisation.	

Section 2 Reporting of Exploration Results		
Criteria	Commentary	
Balanced reporting	• The significant intersections from each prospect are included in this report. A total of 165 exploration holes for 63,585m has been completed. The significant intersections comprise 156m of the total drilled.	
Other substantive exploration data	There is no other substantive exploration data available that is relevant to this report of exploration results.	
Further work	• Underground diamond drilling is continually active in several areas of the mine with the intent to better define known mineralised areas (Mineral Resource to Ore Reserve conversion) as well as to further extend the Mineral Resource into areas potentially hosting additional economic mineralisation.	
	 Surface Drilling is planned for the following targets in 2023 and 2024: North Hercules Hercules South Hercules Jupiter Sol Snake Gully AB- North Oak Bastyan 	